

# **Learning Residual Elastic Warps for Image Stitching** under Dirichlet Boundary Condition

Minsu Kim<sup>1</sup> Yongjun Lee<sup>2</sup> Woo Kyoung Han<sup>1</sup> Kyong Hwan Jin<sup>2\*</sup> <sup>1</sup>DGIST, Republic of Korea <sup>2</sup>Korea University, Republic of Korea



## Overview

**1. Residual Elastic Warps for Overlap Region Align** 

## 2. Dirichlet Boundary Condition for discontinuity free deep image stitching







Multi-step Sequential Alignment of Two Images with Homography and Thin-plate Spline.

#### Previous Deep Image Stitching

w/ Dirichlet Boundary Condition

- Previous deep stitching focuses on reducing L1 Loss of Overlapping region.
- The criteria cause discontinuity between overlap and non-overlap regions.
- Our introduction of Dirichlet boundary condition resolves the limitation.



 $\Delta D^G$  (or  $\Delta D^L$ ) : Four corner (or Control Point) Displacement vector for DLT (or TPS warp),

 $S_V$ : DLT,  $S_{P_r}$  TPS warp, N/K: Iteration Number of Global/Local Alignment,  $P_r$ : 12 × 12 Uniform Grid.

 $E_H, E_T$ : CNN Regressor for Homography or TPS, **C** : Cost volume, Pool: pooling **C** with **H** (or **F**).

Where  $y \in Y$ ;  $y = H \cdot x + F[x]$ ,

| Res                    | Discussion                           |                                                           |  |  |
|------------------------|--------------------------------------|-----------------------------------------------------------|--|--|
| Qualitative Comparison | Ablation study on Boundary Condition | Deep elastic warps with Optical Flow vs Thin-plate Spline |  |  |
|                        |                                      |                                                           |  |  |





Stitched Image







Robust ELA



Ours

LPC



w/o Boundary Constraint

w/ Constraint

**Quantitative Comparison** 

| Benchmark     | UDIS-D |          |       |         |               |           |
|---------------|--------|----------|-------|---------|---------------|-----------|
| Overlap Ratio | ~ 30%  | 31 ~ 60% | 61% ~ | Average | Failure Ratio | Time (ms) |
| SIFT + RANSAC | 18.32  | 21.68    | 22.30 | 21.48   | 1.27%         | 111       |
| UDIS          | 19.61  | 20.15    | 19.88 | 19.97   | 0%            | -         |
| IHN           | 20.09  | 21.73    | 23.27 | 22.99   | 0%            | 38        |
| APAP          | 21.28  | 22.30    | 23.54 | 22.69   | 12.30%        | 574       |
| SPW           | 20.74  | 21.71    | 22.45 | 21.95   | 85.08%        | 383       |
| LPC           | 17.07  | 21.04    | 21.59 | 20.82   | 42.13%        | 1395      |
| Robust ELA    | 21.84  | 22.91    | 24.29 | 23.48   | 0.72%         | 79        |
| Rewarp (ours) | 22.11  | 24.55    | 26.08 | 24.84   | 0%            | 50        |





Homography + Optical Flow

Homography + TPS

High flexibility of warps cause artifacts in low-frequency regions.

### Stitching under Very Large Parallax



Satisfying boundary condition while aligning two images may cause unnatural warps.