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Time-Dependent Deep Image Prior for Dynamic
MRI
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low, IEEE

Abstract— We propose a novel unsupervised deep-
learning-based algorithm for dynamic magnetic resonance
imaging (MRI) reconstruction. Dynamic MRI requires rapid
data acquisition for the study of moving organs such as
the heart. We introduce a generalized version of the deep-
image-prior approach, which optimizes the weights of a re-
construction network to fit a sequence of sparsely acquired
dynamic MRI measurements. Our method needs neither
prior training nor additional data. In particular, for cardiac
images, it does not require the marking of heartbeats or the
reordering of spokes. The key ingredients of our method
are threefold: 1) a fixed low-dimensional manifold that en-
codes the temporal variations of images; 2) a network that
maps the manifold into a more expressive latent space; and
3) a convolutional neural network that generates a dynamic
series of MRI images from the latent variables and that
favors their consistency with the measurements in k-space.
Our method outperforms the state-of-the-art methods quan-
titatively and qualitatively in both retrospective and real
fetal cardiac datasets. To the best of our knowledge, this
is the first unsupervised deep-learning-based method that
can reconstruct the continuous variation of dynamic MRI
sequences with high spatial resolution.

Index Terms— accelerated MRI, unsupervised learning.

I. INTRODUCTION

The aim of dynamic magnetic resonance imaging (MRI)
is to capture the dynamics associated with moving organs,
which requires a fast imaging process. A typical approach is
to accelerate data acquisition by a partial sampling of the k-
space. The resulting partial loss of data must then be compen-
sated to maintain the image quality. Several methods have
addressed this by exploiting spatial or temporal redundancies,
including parallel MRI [1]–[4], k-t acceleration methods [5]–
[7], compressed sensing (CS) MRI [8]–[16], low-rank methods
[17]–[19], manifold-learning methods [20]–[25], and many
others. In the specific case of cardiac applications, the current
state-of-the-art methods further improve the reconstruction by
exploiting the fact that the heart motion is approximately
cyclic. They typically use electrocardiograms or self-gating
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techniques [26], [27]. However, all of these methods are
limited by constraints over the signal-to-noise ratio (SNR),
restrictions in the coil design, hand-picked priors, multiple
processing steps, or inefficient algorithms in their deployment
of the standard convex-optimization techniques.

More recently, inspired by the development of deep-
learning techniques in various imaging modalities [28]–[31],
supervised-learning approaches have been applied to the fast
and accurate reconstruction of partially sampled MRI [32]–
[40]. These methods, however, heavily depend on a training
dataset, especially on ground-truth data (i.e., fully sampled
measurements), which are typically unavailable for dynamic
MRI. Unlike the direct deep-learning approaches, the model-
based deep-learning framework of [41] formulates the image
recovery as an optimization scheme. By unrolling an iterative
algorithm, it minimizes a cost function that combines data
consistency and a deep-learned prior. Because the learned
prior incorporates patient-specific noise patterns into the al-
gorithm, this approach successfully recovers images with fast
reconstruction and acceptable quality. However, it still requires
ground-truth data to train the denoising network.

A. Contribution
In this paper, we propose an unsupervised learning frame-

work in which a generative network is optimized to reconstruct
a sequence of golden-angle radial lines in k-space, also called
spokes. Inspired by deep image priors (DIP) [42], we use the
architecture of a convolutional neural networks (CNN) as an
implicit prior to constrain the search space of the optimization
problem. To learn the temporal dependencies of the dynamic
measurements, we impose a one-dimensional manifold param-
eterized by time. Using this explicit cue, the network learns
to encode the temporal variations of the sequential images
into the spatial closeness of the samples on the imposed
manifold. This simple temporal coupling enables our model
to outperform the other CS algorithms [15], [16], [26], [27]
without bells and whistles—note that our approach is purely
unsupervised and optimized in an end-to-end manner. We
further improve the reconstruction by introducing a mapping
network (MapNet) that brings more flexibility to our latent
space [43], [44]. MapNet consists of a few fully connected
layers with nonlinear activations that learns to map the fixed
manifold into a more expressive latent space. This allows the
subsequent generative network to adapt its input to a given
dataset, thereby improving image quality (Figure 1).

In short, our generative model takes the latent variables
from MapNet and reconstructs dynamic images by exploiting
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its powerful structural prior. With the extensive analyses in
Section IV and experimental results in Section V, we show
that the manifold design and MapNet are both essential to
achieve good reconstructions.

B. Related Work
Unsupervised Learning. Starting from the seminal work
of DIP [42], there have been several studies that applied
unsupervised learning to medical imaging, such as MRI [45]
and positron emission tomography [46], albeit both cases
address the reconstruction of static images. The authors of [47]
used DIP for video compression. Their work is the closest
work to ours but, unlike our goal (the reconstruction of an
image sequence), theirs is to find compact codes for the rep-
resentation of video frames. To find such codes, they optimize
both the network weights and latent variables. Without any
constraint on the latent space, however, the latent codes may
diverge to an arbitrary space. To prevent this, they imposed
either low-rank or similarity constraints on the latent sequence.
As it turns out, this optimization not only requires additional
effort to tune hyper-parameters but also entails a singular-
value decomposition at each iteration, which severely increases
the computational burden. By contrast, our solution imposes
an explicit manifold and lets a mapping network adapt the
manifold to data, which makes the training much simpler and
easier. In addition, their forward model is an identity operator,
while ours is an MR measurement operator with severe under-
sampling.

Manifold Learning. Recently, several manifold-learning
methods have been proposed for dynamic MRI reconstruc-
tion [20]–[23]. The main assumption of these approaches is
that each image frame can be modeled as a point on some
smooth, low-dimensional manifold in a high-dimensional
space [48]. Because the knowledge of the manifold is essential
for these approaches, most methods require navigator signals
that are used to estimate the manifold structure. Specifically, a
series of radial spokes with the same orientations are needed
periodically, which results in a large overhead. In addition,
without dedicated setups, these approaches cannot be readily
applied to the golden-angle sequences implemented on several
scanners. In this paper, we do not consider such additional
acquisitions. Thus, these manifold-learning methods cannot be
applied to our case. In [25], the authors proposed a two-step
approach for the application of the manifold approach to the
navigator-free setup. They first estimated the manifold using
the low-frequency part of the k-space measurements, which is
used in model optimization. However, when the low-frequency
part is not densely sampled (e.g., only five radial spokes per
frame), the manifold estimation becomes inaccurate, which
severely affects the quality of the final reconstruction. By
contrast, our method does not require navigator signals and, in
fact, is agnostic to sampling patterns since the latent manifold
is captured by the network in a data-adaptive way.

II. METHODS

We first briefly recapitulate the content of deep image prior
(Section II-A) as well as the physics of dynamic MRI (Section

II-B). Then, we describe our method based on DIP with a
mapping network and on the learning of the underlying latent
manifolds (Section II-C).

A. Deep Image Prior

The deep image prior (DIP) [42] is a recent approach that
has been proposed to solve static linear inverse problems,
such as image denoising, inpainting, and superresolution. DIP
has been found to capture advanced image statistics in a
purely unsupervised way with neither pre-training nor external
training data. Taking a random but fixed latent variable z ∈ RL
as input, DIP optimizes the parameters θ of an untrained
neural network fθ to produce an output fθ(z) that is consistent
with the measurement y ∈ RM . The problem being solved is
formalized as

θ∗ = arg min
θ
‖y −H(fθ(z))‖22 , (1)

where H ∈ RM×N is a forward model. For example, in
the superresolution problem, y is a noisy, low-resolution
image and H is a downsampling operator. The output of the
optimized network x∗ = fθ∗(z) then yields a reconstructed
image of surprisingly good quality. This has been ascribed
to the implicit representation bias of the CNN architecture,
which favors a natural-looking output image over a noisy
unstructured one. In this paper, we extend the concept of
DIP to solve the more challenging problem of dynamic MRI
reconstruction.

B. Dynamic MRI

We use a radial 2D MRI acquisition scheme where the
instrumentation is such that it physically records a temporal
sequence of radial lines of the Fourier transform of a fixed
slice (image) of a 3D volumetric object. The underlying 2D
image is represented by a vector x ∈ CN , where N is the
number of pixels. At a given time point t, the vector of k-space
measurements y(t) ∈ CM0 consists of the uniform samples of
the 2D Fourier transform of the image taken along a radial
line at some orientation ϑ = ϑ(t). Because of the central-slice
theorem, these measurements can also be interpreted as the 1D
Fourier transform of the Radon transform of the image at angle
ϑ. By repeating this process with a sufficiently dense sequence
of angles ϑk ∈ [0, π), and assuming the images to be static,
one obtains a complete dataset from which a high-quality
(static) image can be reconstructed using standard tomographic
techniques. Now, the difficulty with dynamic imaging is that
the underlying image is not static but varies through time,
which calls for a more sophisticated reconstruction procedure.

1) Forward Model: The measurement process that relates the
image at time t and the k-space measurements with angle
ϑ = ϑ(t) is linear and formally described by the relation

y(t) = H
(
ϑ
)
x(t), (2)

where H(ϑ) is the (M0 × N) system matrix that represents
the combined effect of taking the 2D Fourier transform of x
and resampling along a radial line with direction ϑ. The type
of measurement provided by (2) is referred to as an angular
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Fig. 1: Overview of our framework. (A) Schematic illustration of the dynamic MRI data-acquisition procedure. We use a
nonuniform fast Fourier transform with a golden-angle scheme and spoke sharing. (B) Proposed framework based on latent
mapping and deep image priors. The block labeled gφ is a mapping network (MapNet) of fully connected layers and the block
labeled hψ denotes the generative CNNs.

spoke. In practice, we acquire a series of K spokes taken at
regularly spaced time point tk = t0+k∆t, k = 0, . . . , (K−1)
with step size ∆t. The spoke orientations follow the golden-
angle strategy

ϑk = ϑ0 + ω0 k∆t, (3)

where ϑk gives the orientation of a spoke at time tk =
t0 + k∆t, with ω0 its angular velocity. The golden-angle
specificity is the irrationality condition (ω0 ∆t/π) /∈ Q, which
is approximated by setting (ω0 ∆t) ≈ 111.25◦ [15]. Then, our
task is to reconstruct the image sequence {x(tk)}K−1k=0 from
the measurement sequence {y(tk)}K−1k=0 .

2) Spoke-Sharing: The ambitious goal of accelerated dy-
namic MRI is to reconstruct {x(tk)}K−1k=0 —or, even better,
x(t) for t ∈ [t0, TK−1]—from the finite set of measurements
{y(tk)}. However, a single orientation per frame does not
provide enough information to recover the corresponding
instantaneous two-dimensional image x(tk). To overcome this
issue, we assume that the changes are slow over some small
number of neighboring spokes (ns), so that x(t) ≈ x(tk)
for all t ∈ Tk = [tk − ns ∆t/2, tk + ns ∆t/2). The sharing
parameter ns ∈ 2N + 1 is the number of radial lines used
for the reconstruction of one frame; it controls the temporal
resolution.

To further describe this pooling process, we introduce the
augmented measurement vector yk =

(
y(tm)

)k+(ns−1)/2
m=k−(ns−1)/2

of size M = (ns × M0). Correspondingly, we de-
fine the column-wise concatenated system matrix Hk =

(H(ϑk))
k+(ns−1)/2
m=k−(ns−1)/2, whose time dependence is indicated

by the index k. This results in the forward imaging model

yk = Hk x(tk), (4)

where the matrix Hk ∈ CM×N encodes the (pseudo-
simultaneous) acquisition of ns spokes at time tk. The underly-
ing strategy is called spoke sharing. Because of the irrationality
condition of the golden-angle approach, no direction will
ever be measured twice. While the imaging model (4) is
more favorable than (2) because of the augmented number
of measurements, the problem is still ill-posed because M =
nsM0 remains smaller than N (the number of unknowns).

The common practice, therefore, is to introduce an appropriate
regularizer. In this paper, we propose to constrain the solution
by applying a deep image prior that is shared among all
frames.

C. Proposed Framework

To address the dynamic MRI reconstruction problem, we
propose a new framework, time-dependent deep image prior
(TD-DIP). We first modify the original DIP so that it takes a
sequence of input and output pairs (Figure 1). More specif-
ically, we optimize an untrained neural network fθ to map
a sequence of inputs {zk}K−1k=0 to the spoke-shared mea-
surements {yk}K−1k=0 , thereby reconstructing the sequence of
images {x(tk)}K−1k=0 by searching for

θ∗ = arg min
θ

1

K

K−1∑
k=0

‖yk −Hkfθ(zk)‖2, (5)

leading to x∗(tk) = fθ∗(zk). Note that the optimization is
done in the measurement domain. This enforces the image
sequence to be consistent with the measurements, while the
modified DIP scheme regularizes the reconstructed images.

Manifold Design. To fully exploit the characteristics of dy-
namic MRI, the underlying model must be able to effectively
encode the temporal variations of the measurements while pre-
serving the structure of the individual frames. To this end, we
propose to design a manifold Z , thereby effectively injecting
a specific prior into the network. For example, an ordered
sequence {zk} from a straight-line manifold will guide the
network to associate spatial closeness of input variables with
temporal closeness of images. This encourages the network
to reconstruct an image sequence with temporally similar
attributes. For a nearly periodic signal such as the cardiac
motion, we can encode the expected behavior by letting the
manifold take the structure of a three-dimensional helix.

Mapping Network (MapNet). Although a careful choice
of temporally meaningful manifolds typically results in an
excellent performance, the fact that the design is hand-crafted
may also sometimes limit the performance of the network
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Algorithm 1 TD-DIP for dynamic MRI. We use Adam
optimizer [49] with niter = 10, 000 and B = 1.

Input: Set of measurements {yk}K−1k=0 , number of iterations
niter, batch size B, and number of cycles p.

1) Select a manifold Z .
2) Sample {zk}K−1k=0 from Z .
3) Optimize θ.

for niter iterations do
• Randomly sample a batch {k0, . . . , kB−1} of size
B from {0, . . . ,K − 1}.

• Compute the batch loss of (6).
• Update θ with gradient ∇θLB(θ).

end for
4) Reconstruct images {(h ◦ g)θ∗ (zk)}K−1

k=0
.

[43]. To add flexibility to our model and to exploit the rich
representation power of the network, we introduce a mapping
network (MapNet) refer to as gφ. In our design, MapNet
involves a few fully connected layers with nonlinearities. It
learns to map a fixed manifold into the more expressive latent
space W = gφ(Z). More specifically, our model fθ now
has a hierarchical architecture that consists of the MapNet gφ
followed by the CNN hψ so that fθ = hψ ◦gφ and θ = {φ, ψ}
(Figure 1 (B)). This leads us to replace (5) by

LK(θ) =
1

K

K−1∑
k=0

‖yk −Hk(h ◦ g)θ(zk)‖2. (6)

The role of gφ is to appropriately warp the input manifold to
facilitate hψ in its reconstruction of the true dynamics. Overall,
the insertion of gφ provides better flexibility to our model and
lets us efficiently exploit the representation power of neural
networks, resulting in a good reconstruction.

Final Algorithm. Our optimization scheme is given in Algo-
rithm 1. We minimize the loss function (6) using standard
gradient-descent methods [49] for niter iterations. At each
iteration, instead of (6), a batch loss LB(θ) is updated where a
batch {k0, . . . , kB−1} of size B is randomly sampled from the
index set {0, . . . ,K − 1}. The corresponding input variables
{zkb}

B−1
b=0 are fed to the network and its parameters are

updated using the gradient with respect to θ.

III. EXPERIMENTS

A. Datasets

All experimental datasets are breath-hold MR images. We
assume a twofold upsampling of measurements for every
dataset. Therefore, the size of the reconstructed fields of view
is half that of the first dimension of the measurements.

1) Retrospective Dataset: A cardiac cine dataset was ac-
quired using a 3T whole-body MRI scanner (Siemens; Tim
Trio) equipped with a 32-element cardiac coil array. The
acquisition sequence was bSSFP and prospective cardiac
gating was used. The imaging parameters were as follows:
FOV=(300× 300) mm2, acquisition matrix size=(128× 128),
TE/TR=1.37/2.7 ms, receiver bandwidth=1184 Hz/pixel, and

flip angle=40◦. The number of frames was 23 and the temporal
resolution was 43.2 ms. The resulting fully sampled Cartesian
trajectories are used as ground truth. To retrospectively simu-
late the radial sampling, we implemented the forward model
using the golden-angle strategy. Sinograms are obtained as
shown in Figure 1. The number of spokes for reconstructing a
frame is ns = 13. For a single-cycle simulation, the dimension
of the sinograms is (K×ns×Mω×C) = (23×13×256×32).
For a multicycle simulation, we acquire p = 13 cycles, which
results in K = 13 · 23 = 299 frames.

2) Fetal Cardiac Dataset: Fetal cardiac MRI data were
acquired on a 1.5 T clinical MR scanner (MAGNETOM Aera,
Siemens AG, Healthcare Sector, Erlangen, Germany) with
an 18-channel body array coil and a 32-channel spine coil
for signal reception. We used an untriggered continuous 2D
bSSFP sequence that was modified to acquire radial readouts
with a golden-angle trajectory [27]. The acquisition parameters
were: FOV = (260 × 260) mm2, acquisition matrix size = (256
× 256) pixels, slice thickness = 4.0 mm, TE/TR = 1.99/4.1 ms,
RF excitation angle = 70◦, radial readouts = 1400, acquisition
time = 6.7 s, and bandwidth = 1028 Hz/pixel. The number of
shared spokes for reconstructing a frame is ns = 5.

B. Baseline Methods
We apply three baseline methods.
1) NUFFT is a nonuniform, zero-filled fast Fourier trans-

form1.
2) GRASP [15] is a golden-angle radial sparse parallel

MRI algorithm, which extends the idea of k-t SPARSE-
SENSE [12] to volumetric golden-angle radial acquisi-
tions. Here, the spoke-sharing strategy is not applied.

3) Reordering Method (RD) [26], [27] is a three-step
algorithm. RD first reconstructs real-time images of
limited image quality and uses these images to reorder
or self-gate the measurements, which in turn are used
for the final reconstruction with k-t SPARSE-SENSE
[12]. In the retrospective experiment, where we know
the phase indices, we use the exact order of frames for
self-gating.

C. Estimation of Cardiac Cycles
For the processing of the fetal cardiac dataset, RD and our

algorithm both require a rough estimate of the number of
cardiac cycles seen over the whole duration of a sequence
of data acquisition. It can be typically obtained from k-space.
Simple techniques to estimate the cardiac cycles from radial
data have been previously reported by [26], [50], [51]. Radial
acquisition schemes sample the center of k-space at every
readout, which supports the extraction of physiological motion
signals. The central k-space coefficient of a radial readout
(i.e., the echo peak) corresponds to the complex sum of the
transverse magnetization across the entire image volume. In
the presence of moving structures such as a beating heart,
changes in the overall transverse magnetization due to motion
will induce a modulation of the consecutive echo peaks.

1https://github.com/marchdf/python-nufft
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Operation Layer Number of
Filters

Size of Each
Filter (XYC)

Strides
(XY)

Zero Padding
(XY)

Size of Output
Image (XYC)

Input of hψ (L = 64) 8× 8× 1
Conv+BN+ReLU 128 3× 3× 1 1× 1 1× 1 8× 8× 128
Conv+BN+ReLU 128 3× 3× 128 1× 1 1× 1 8× 8× 128

NN interp. 2× 2 16× 16× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 16× 16× 128

NN interp. 2× 2 32× 32× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 32× 32× 128

NN interp. 2× 2 64× 64× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 64× 64× 128

NN interp. 2× 2 128× 128× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 128× 128× 128

Conv. 2 3× 3× 128 1× 1 1× 1 128× 128× 2

TABLE I: Architecture of our generative convolutional network (hψ). Conv.: convolution; BN: batch normalization; NN interp.:
nearest-neighbor interpolation.

(Trajectory imperfections and eddy currents can also modulate
echo peaks, but their frequency responses differ from the
physiological motion frequencies and, thus, can be filtered
out.) The resulting signal can then be used to estimate the
number of cardiac cycles and to inform the manifold network.
For our fetal cardiac dataset, we find that the time-course has
approximately 13 periods so that we finally set p = 13.

D. Evaluation Metric
We use the regressed SNR and structural similarity index

(SSIM) [52] as quantitative metrics, where higher scores
correspond to better reconstructions. With the oracle x and
the reconstructed image x∗, RSNR and SSIM are given by

RSNR = max
a,b∈R

20 log
‖x‖2

‖x− ax∗ + b‖2
,

SSIM =
(2µx∗µx + c1) (2σx∗x + c2)

(µ2
x∗ + µ2

x + c1) (σ2
x∗ + σ2

x + c2)
. (7)

Here, µx∗ and µx are the expectations, σ2
x∗ and σ2

x are the
variances, and σ2

x∗x is the covariance of x∗ and x, respectively.
In addition, c1 and c2 are stabilization parameters chosen as
c1 = (0.01ξ)2 and c1 = (0.03ξ)2 with ξ being the dynamic
range of the pixel intensity.

E. Implementation Details
We use an Intel i7-7820X (3.60GHz) CPU and an NVIDIA

Titan X (Pascal) GPU. Pytorch 1.0.0 on Python 3.6 is used to
implement our generative model2. The network is optimized
until niter = 10,000 with B = 1 using the Adam optimizer [49]
with default settings and a learning rate of 10−3.

F. Architectures
The mapping network gφ comprises two consecutive fully

connected layers of 512 hidden dimensions with ReLUs in

2Our code is available at https://github.com/jaejun-yoo/TDDIP

Method RSNR (dB) SSIM
NUFFT 8.4 0.582
GRASP [15] 24.1 0.980
Straight line (L = 64) 26.5 0.985

TABLE II: Performance on the retrospective dataset for a single
heart cycle.

between. It outputs an L = 64-dimensional latent vector
which is reshaped to (8× 8) for the subsequent generative
network hψ (Table I). The generative network consists of
convolutional layers, batch normalization layers, ReLUs, and
nearest-neighbor interpolations. We apply zero-padding before
convolution to let the size of the output mirror that of the
input. At the last layer, ReLU is not used. The output has two
channels because MRI images take complex values.

IV. DESIGN OF THE LATENT SPACE

In this section, we analyze the individual components of our
model and compare the performance with baselines. We first
demonstrate the simplest setup that reconstructs a single heart
cycle. We then move on to a more complicated dataset that
has multiple heart cycles.

A. Straight-Line Manifold for a Single Heart Cycle

A straight-line manifold can help the network to encode the
temporal variations of images. To implement it, we first sample
z0, zK−1 ∼ U(RL). Then, the intermediate zk are obtained
by linear interpolation. This yields a straight-line manifold that
simply joins the end points as

zk = (1− αk) z0 + αk zK−1, (8)

where αk = k/(K − 1).
Although simple, this configuration already outperforms

the other baseline methods and successfully reconstructs the
dynamics for a single cycle dataset (Table II).
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Fig. 2: Visual comparison of reconstructed (y-t) images using the baseline methods and ours with each configuration in Table
III. The reconstructed images from fully sampled Cartesian trajectories are used as a ground truth. A white line at the heart
region indicates the cross section that is visualized. Here, for simulating RD [26], [27], we reorder the spokes of each frame
from 13 periods resulting in 169 spokes per frame. For a better comparison, the absolute residual images to the ground truth
are provided in the lower panels.

B. Manifolds for Multiple Heart Cycles
In practice, the measurements generally span several heart

cycles. To better exploit the fact that the cardiac movement
has a nearly periodic behavior, it is of interest to explore more
sophisticated manifolds.
• Segmented Line. We first sample p+ 1 = 14 landmarks
{z(τ)}τ∈[0...13] ∼ U(RL), where p is the number of
cardiac periods. We generate a set of equispaced inter-
mediate zk of each segment by a linear combination of
zτ and z(τ+1), ∀τ ∈ [0 . . . 12].

• Circles. Let zk = (z
(k)
1 , z

(k)
2 , zslack) ∈ RL and zslack ∼

U(RL−2). The first two coordinates (z
(k)
1 , z

(k)
2 ) are points

from a unit circle with p cycles. The slack coordinates
do not depend on k. Thus, we have that

zk =

(
cos(

2π p k

(K − 1)
), sin(

2π p k

(K − 1)
), zslack

)
. (9)

• Helix. Similar to “Circles", the first two coordinates of
zk are points from a unit circle with p cycles. The slack
coordinates zslack ∼ U(RL−2) are now scaled by k

(K−1) ,
leading to

zk =

(
cos(

2π p k

(K − 1)
), sin(

2π p k

(K − 1)
),
k zslack
(K − 1)

)
. (10)

Effect of the Manifolds. In Figure 2, we show the recon-
structed (y-t) images of the cross section that is denoted by a
white line in the GT (y-x) image3. When we use a straight-
line manifold, the network fails to capture the heart movement
and outputs the same static image over all frames. This is
natural since most of the pixels are static and the dynamic
parts are localized in a small area. Thus, the network easily

3For display purposes, we show only one cycle of our cross section.

Method RSNR (dB) SSIM
NUFFT 8.5 0.579
GRASP [15] 24.2 0.982
Reordered method (RD) [26], [27] 25.0 0.986
Straight line (L = 64) 20.6 0.973
Segmented line (L = 64) 25.9 0.987
Circles (L = 64) 27.1 0.990
Circles (L = 2) + MapNet (L = 64) 27.5 0.991
Helix (L = 64) 27.6 0.990
Helix (L = 3) + MapNet (L = 64) 28.1 0.991

TABLE III: Performance on the Retrospective dataset for
multiple heart cycles. Averaged RSNR and SSIM over five
runs of each CNN latent space design are shown.

finds a local minimum that corresponds to an image that
remains constant over all frames. However, as soon as we
switch to “periodic-like” manifold designs, the network starts
to reconstruct the movement (Table III). For example, when we
use a line with 13 segments as input, the performance is better
than the RD that uses the same information. Using circles with
13 repetitions as input manifold, we improve even further.
However, the helix input manifold gives the best performance
among the others without MapNet because the heartbeat is
nearly periodic.

Effect of the Mapping Network. In addition to the choice
of its manifold, our method has another design choice: its
mapping network. By introducing MapNet, the network can
adapt its input manifold to a given dataset, which allows us
to further improve the reconstruction (Table III). This can be
clearly seen in the t-SNE visualization of the mapped latent
space (Figure 7), which we discuss in Section VI.
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Fig. 3: Visual comparison of reconstructed (y-x) images using NUFFT, GRASP [15], RD [26], [27], and our method at both
(A) diastole and (B) systole. The absolute residual image to the ground truth is also given.

Fig. 4: Entire cardiac cycle reconstructed by our method and the absolute residual images to the ground truth.
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Fig. 5: Visual comparison of reconstructed fetal hearts: (y-x) images at both systole and diastole. The top row is the results
of NUFFT, GRASP [15], RD [26], [27], and our method (Helix + MapNet). The four bottom rows show magnified views,
where A and A" are the heart region at systole and diastole, respectively.

In summary, our analysis shows that both a careful design of
the manifold and the use of a mapping network are necessary
to achieve the best performance. Based on these, from now
on, we use ‘Helix+MapNet’ as our default setup.

V. RESULTS

We first show results on the retrospective dataset, where
the desired behaviors of the reconstruction methods are well-
defined. We then illustrate on the fetal cardiac dataset that the
observations extend well to a real scenario.

A. Retrospective Dataset: Multiple Heart Cycles

The benefits of our method are evident in both the (y-t) view
(Figure 2) and (y-x) view (Figure 3) of each frame. In Figure
2, both GRASP and RD reconstruct the movement of the
heart. RD shows a better performance than GRASP, which was
expected because it takes advantage of the period information
that is estimated while reordering the frames. However, as
can be seen in the residuals, GRASP and RD show significant
errors in the reconstruction of the dynamics. In the (y-x) view
of Figure 3, we report the RSNR scores of each method for the
corresponding frames. Here, GRASP shows blurring artifacts,
while the residual image reveals errors around the wall of
the heart in both the GRASP and RD reconstructions. By
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Fig. 6: Visual comparison of reconstructed fetal hearts: (y-t) images. A white line in the gold standard indicates the cross
section that is visualized. The top row contains the results of NUFFT, GRASP [15], RD [26], [27], and our method (Helix +
MapNet). The two bottom rows provide a comparison between RD and our method from diastole to systole.

contrast, our method gives better results with fewer artifacts.
This difference is more prominent at systole (Figure 2 (B)),
a heart phase when the cardiac motions are captured better
by our model than the others, quantitatively and qualitatively.
The systolic phase captured by GRASP and RD is too flat,
causing the severe errors concentrated near the heart area.
Especially, the RSNR value of RD drops from 24.26 dB to
22.88 dB, while our method works similarly at both phases
(27.46 dB at diastole and 27.98 dB at systole). This is clearly
seen in the residual images. Compared to the other baselines,
our method provides the closest reconstruction to the ground
truth with very small errors. Here, for better visualization, we
increased the magnitude of the residual images ten times. We
see likewise in Figure 4 that our method provides a stable
reconstruction quality over the entire cardiac cycle.

B. Fetal Cardiac Dataset

Having demonstrated the superior behavior of our method
on the retrospective dataset, we now assess our model on
real data. In the absence of ground truth, we shall take the
static image that is generated from all spokes as pseudo-gold

standard (Figure 5 first column)—note that it is of high quality
only in the regions that are not moving.

Like in the retrospective experiments, GRASP and RD are
able to reconstruct cardiac movements at both systole and
diastole. RD gives much better reconstructions, especially in
the dynamic region (Figures 5 (A) and (A")). However, RD
shows a spurious artifact at the edge area (Figure 5 (B)) and
fails to find the detailed structures of the static background
(Figure 5 (C)). By contrast, our method produces better-
resolved features in dynamic areas. Specifically, it preserves
well the hyperintense dot-like structures (leftmost and middle
arrows in Figures 5 (A) and (A")) as well as the line-like
structure (the rightmost arrow in Figures 5 (A) and (A")). In
addition, our method successfully reconstructs the static areas.
For example, it recovers even a small dot-like feature (leftmost
black arrow in Figure 5 (B)), which RD fails to recover. It does
not suffer from artifacts at the edges (white arrows in Figure 5
(B)) and recovers the low-intensity background areas as well
(Figure 5 (C)).

In Figure 6, it is apparent that NUFFT completely fails in
capturing the fetal cardiac beats. The GRASP reconstruction
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Fig. 7: Visualization of three-dimensional t-SNE embeddings. (A) the fixed latent space of a helix in 64-dimension (‘Helix’);
(B) the mapped latent space by the mapping network in 64-dimension (‘Helix + MapNet’); and (C) its corresponding image
space in (256× 256) dimensions. Here, the temporal index is color-coded (1,400 frames). There are approximately 13 cycles
of heart motion, which are also clearly seen in the embedded helix of the reconstructed images.

is less noisy but still far from satisfactory. RD fares better;
unfortunately, its reordering process can lead it to superpose
in the same frame spokes that belong to different phases of the
cardiac cycle. By contrast, our method reconstructs each frame
with data from just a few neighboring spokes (ns = 5)4, thus
avoiding the mingling of different cycles. The reconstructed
systolic phase captures the true motion of the heart better. The
cross section from our method is similar to that of RD but the
motion may look a little smoother in our case (Figure 6, top
row). This is expected because RD uses retrospectively gated
data, while our method uses real-time data (i.e., ours uses
much fewer data per image). In addition, this is also partly
due to our result having more frames for a single cycle than
RD. Specifically, unlike our reconstruction of entire image
frames, RD reconstructs a single cardiac cycle since it uses
multiple Fourier slices of different time frames to recover a
single image. In addition to the absence of ground truth, this
complicates the direct comparison between the results of RD
and our method.

VI. DISCUSSION

A. t-SNE Visualization of the Latent and Image Spaces
To assess the extent of structural change as a function

of time, we used t-stochastic neighborhood embeddings (t-
SNE) [53]. t-SNE is a nonlinear dimension-reduction tech-
nique that is widely used for the mapping of high-dimensional
data such as images or network features into a low-dimensional
space of two or three dimensions. Specifically, the mapping
is such that similar points are grouped together and dissimilar
points are modeled by distant points with high probability.

In Figure 7 (A), we first show the t-SNE result of the
original manifold when the variables are generated according
to (10) with L = 64 and p = 13. Unsurprisingly, this recovers
a helix with 13 cycles. In Figure 7 (B), we show the t-SNE
result of the 64-dimensional latent variables gφ∗ , where zk is

4We have also tried to reconstruct images with fewer spokes (ns = 3)
and even without sharing the spokes (ns = 1). The quality of reconstructed
images degrades as the number of shared spokes decreases, but our method
converges and reconstructs the movements (results not shown).

generated according to (10) with L = 3 and p = 13. It suggests
that the latent variables still lie on a helical manifold with 13
periods, while the height of the helix is shortened compared to
the original input in Figure 7 (A)—the first and the last cycles
become closer, but they are not entirely collapsed to a single
circle. This implies that MapNet successfully encoded both the
similarity and the dissimilarity among different cardiac cycles.

Finally, in Figure 7 (C), we display the t-SNE result of
the (256 × 256)-dimensional reconstructed images. It again
shows a helical geometry with 13 local folds, each of which
corresponding to a single cycle of the cardiac motion. The
irregular shape and length of each fold implies different
movements and rates of the reconstructed cardiac cycles,
respectively. This reveals that the near-periodicity of the data
is well represented by the network. As shown in Section IV,
we ascribe this to the introduction of MapNet that can warp the
given manifold in a data-adaptive fashion, while retaining the
prior information that we inject when we impose the geometry
of the manifold.

B. Benefits of Our Approach

Continuous Dynamic Reconstruction. One major benefit
of our approach is that it lets us reconstruct temporally
continuous dynamic images. We showed that the network fθ∗

successfully captures the underlying nonlinear dynamics of the
image manifold, and the input variable zk lets us reconstruct
the image at the corresponding timestamp (Figure 7). Because
our method represents images as a learned parametric function
fθ∗ , we can recover nontrivial intra-frame images by navi-
gating between two consecutive input variables, which would
not be possible with other standard interpolation methods such
as temporal bilinear interpolation. Note that this is a unique
benefit of our method that the other algorithms cannot provide.

Memory Savings. In the methods based on compressed sens-
ing (CS), the gradient updates of the iterative optimization
process necessitate memory that is large enough to hold the
target reconstruction volume. For example, the reconstruction
of 5,000 frames with spatial size (256× 256) would need one
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to handle data of size (256× 256× 5,000), which demands
for over a gigabyte of memory. Our approach, by contrast,
requires much less memory. It optimizes the neural network
using batches, which requires the simultaneous handling of
only those frames that correspond to the batch size. In
short, the fact that our proposed approach handles few 2D
images whereas CS handles a 2D+t extended sequence leads
to substantial savings, particularly for golden-angle dynamic
MRI with many frames. In our approach, we only store a
2D generative model; for example, its memory demands for
the spatial size (256× 256) are about half-a-dozen megabytes.
This cost is negligible compared to that of the CS approach.

Easier Optimization With Fewer Hyperparameters. Be-
cause our model is fully automated, it leads to a simpler
optimization task with fewer hyperparameters than the con-
ventional methods. For instance, once the model is set, k-
t SENSE requires three additional, interdependent hyperpa-
rameters whose optimal values are found only after some
substantial grid-search effort. In contrast, our approach has
only two hyperparameters (an initial learning rate and a
number of iterations) that are easy to set and do not affect
much the final performance as long as the model converges.

C. Limitations and Future Work
Faster Forward model. Regarding the execution time, the
major bottleneck of our method is the slow forward model.
It depends on the NUFFT package which, in its current
implementation, does not benefit from a GPU and is a major
cause for slowdown. Indeed, NUFFT takes 47 % of the entire
running time of our algorithm per each iteration; the average
processing time for 100 repetitions is 6.55 s for back and
forth NUFFTs, and 3.08 s for the remaining parts. With a
more efficient, GPU-friendly implementation such as [54], our
algorithm could be substantially accelerated. One obvious way
to achieve this goal is to migrate to a lower-level programming
language than Python. Another way out is to use the Cartesian
sampling pattern. Since our framework is not restricted to the
radial sampling pattern, this will remove the bottleneck while
maintaining all the benefits of using our method.

Extension to Free-breathing Setting. Although breath-held
cine MRI is widely used, it is often challenging for children
and patients with heart failure or respiratory complications.
One of the standard alternatives is an ungated real-time imag-
ing in free-breathing mode using nonuniform acquisitions at
the expense of lower spatial and/or temporal resolution [55],
[56]. Several manifold-learning methods [20], [24], [25] have
been proposed to handle this more difficult scenario. It would
be interesting to extend our generative framework to this free-
breathing setting in the spirit of what has been accomplished
in [57] recently.

Extension to Multi-slice Imaging. In this paper, our main
focus is mainly on reconstructing 2D+t with a single slice
measurement dataset. Similar to what we did for encoding
temporal variations, we believe that our technique can be
extended to multi-slice data by designing a manifold that
encodes the spatial variations across different slices. Another

easy extension would be to use a 3D CNNs architecture.
However, from an experiment point of view, we are still far
from performing 3D imaging with high temporal resolution.

Different architectural variations Because the network ar-
chitecture that we explored in the paper is never exhaustive,
there can be many architectural variations that would bring
more improvement than the currently reported results. For
example, we believe that adopting the advanced generative
architectures in computer vision area such as style-based
models [43] or good initialization techniques of the network
parameters would further improve the performance easily.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep-learning-
based algorithm for the reconstruction of dynamic magnetric
resonance images (MRI). It provides high spatial resolution
with access to the subframe—or even continuous—temporal
control of dynamic images. By designing a one-dimensional
manifold, combined with a mapping network, our generative
network model fully exploits the representation power of the
networks as well as their structural priors. Our study showed
that the proposed method successfully reconstructs dynamic
MRI in an end-to-end manner and outperforms the state-of-
the-art CS approaches by 3.1 dB. To the best of our knowledge,
this is the first unsupervised-learning approach in accelerated
dynamic MRI.
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