

Learning Local Implicit Fourier Representation for Image Warping

Jaewon Lee¹ Kwang Pyo Choi² Kyong Hwan Jin¹ Image Processing Laboratory (IPL), DGIST, Korea¹ Samsung Electronics, Korea²

Paper

Code

Introduction

Image warping

Image warping aims to reshape images defined on rectangular grids into arbitrary shapes

Motivation 1 – interpolation-based approach

Limited **generalization** into a large-scale representation (out of training range)

Motivation 2 – INR-based approach

+ Overcome spectral bias

Spatial-invariant function

- Good generalization
- Spectral bias

Local texture estimator for image warping

		Г	
SRWarp (21')	LIIF (21')	LTE (22')	LTEW (ours)
	×	×	✓
×		✓	✓
✓	×	✓	✓
•	SRWarp (21')		

Method **TWARP** I^{IN} $(h \times w \times 3)$ $(H \times W \times 3)$ **Element-wise Addition** Local grid, $\delta_{\mathbf{x}}$ ($H \times W \times 2$)

Image warping

Given an image $I^{IN}: X \mapsto \mathbb{R}^3$, and a differentiable and invertible coordinate transformation $f: X \mapsto Y$ we aim to represent a warped image $I^{WARP}: Y \mapsto \mathbb{R}^3$

Local implicit representation function

$$\mathbf{I^{WARP}}[\mathbf{y}; \mathbf{\theta}, \mathbf{\psi}] = \sum_{j \in \mathcal{T}} w_j g_{\theta}(h_{\psi}(\mathbf{z}_j, \mathbf{x} - f(\mathbf{x}_j)))$$

where $\mathbf{z} = E_{\varphi}(\mathbf{I^{LR}})$

Local texture estimator

 $f_B(\cdot)$ Bilinear interpolation of I^{WARP}

Nearest-neighborhood interpolation of I^{WARP}

$$h_{\psi}(\mathbf{z}_{j}, \boldsymbol{\delta}, \mathbf{c}) = \mathbf{A}_{j} \odot \begin{pmatrix} \cos\left(\pi(\mathbf{F}_{j}\boldsymbol{\delta} + h_{p}(\mathbf{c}))\right) \\ \text{Frequency Phase} \\ \sin\left(\pi(\mathbf{F}_{j}\boldsymbol{\delta} + h_{p}(\mathbf{c}))\right) \end{pmatrix}$$

However, LTE fails to represent warped images since F_i is a frequency response of an input image, instead of of a warped image.

Learning Fourier information with coordinate transformations

1. Local grid relationship

Shape ($H \times W \times 10$)

$$\begin{aligned} \boldsymbol{\delta}_{\mathbf{y}} &= \mathbf{y} - f(\mathbf{x}_j) = f(\mathbf{x}) - f(\mathbf{x}_j) \\ &= \{ f(\mathbf{x}_j) + \mathbf{J}_f(\mathbf{x}_j)(\mathbf{x} - \mathbf{x}_j) + \mathcal{O}(\mathbf{x}^2) \} - f(\mathbf{x}_j) \\ &\simeq \mathbf{J}_f(\mathbf{x}_j)(\mathbf{x} - \mathbf{x}_j) = \mathbf{J}_f(\mathbf{x}_j) \boldsymbol{\delta}_{\mathbf{x}} \end{aligned}$$

2. Frequency response of a warped image

 $\mathbf{F}_j' \simeq \mathbf{J}_f^{-T}(\mathbf{x}_j)\mathbf{F}_j.$

3. Redefine the LTE (LTE Warp)

$$h_{\psi}(\mathbf{z}_{j}, \boldsymbol{\delta}_{\mathbf{y}}, f) = \mathbf{A}_{j} \odot \begin{bmatrix} \cos(\pi < \mathbf{F}'_{j}, \boldsymbol{\delta}_{\mathbf{y}} >) \\ \sin(\pi < \mathbf{F}'_{j}, \boldsymbol{\delta}_{\mathbf{y}} >) \end{bmatrix}$$

$$\simeq \mathbf{A}_{j} \odot \begin{bmatrix} \cos(\pi < \mathbf{J}_{f}^{-T}(\mathbf{x}_{j})\mathbf{F}_{j}, \mathbf{J}_{f}(\mathbf{x}_{j})\boldsymbol{\delta}_{\mathbf{x}} >) \\ \sin(\pi < \mathbf{J}_{f}^{-T}(\mathbf{x}_{j})\mathbf{F}_{j}, \mathbf{J}_{f}(\mathbf{x}_{j})\boldsymbol{\delta}_{\mathbf{x}} >) \end{bmatrix}$$

$$= \mathbf{A}_{j} \odot \begin{bmatrix} \cos(\pi < \mathbf{F}_{j}, \boldsymbol{\delta}_{\mathbf{x}} >) \\ \sin(\pi < \mathbf{F}_{j}, \boldsymbol{\delta}_{\mathbf{x}} >) \end{bmatrix}$$

$$= h_{\psi}(\mathbf{z}_{j}, \boldsymbol{\delta}_{\mathbf{x}}).$$

Shape-dependent phase estimation

 $\tilde{J}_{f^{-1}}(\mathbf{y}) = \begin{pmatrix} F - D \\ B - H \end{pmatrix}$

$$oldsymbol{s}(\mathbf{y}) = [ilde{\mathbf{J}}_{f^{-1}}(\mathbf{y}), ilde{\mathbf{H}}_{f^{-1}}(\mathbf{y})]$$

Fourier space visualization

Fourier space is transformed by the Jacobian matrix

Results

Quantitative comparison

Asymmetric-scale SR within in-scale (top) and out-of-scale (bottom)

RCAN [51]	29.00	30.01	30.46	26.48	26.94	27.11	26.06	27.19	26.47	25.52	24.50	24.84
MetaSR-RCAN [19]	28.75	29.74	30.38	26.32	26.85	27.03	26.07	27.15	26.45	25.50	24.47	24.84
Arb-RCAN [46]	28.37	29.35	30.08	26.06	26.63	26.84	25.91	27.14	26.40	25.36	24.12	24.61
LTEW-RCAN (ours)	29.26	30.16	30.64	26.60	27.06	27.25	26.25	27.28	26.62	25.85	24.79	25.18
Method		$\mathbf{Set5}$		Set14		B100			Urban100			
	$\times 1.5$	$\times 1.5$	$\times 1.6$	$\times 4$	$\frac{\times 3.5}{\times 2}$	$\times 3.5$						$\times 3.55$
	$\overline{}$ \times 4	$\times 3.5$	$\times 3.05$	$\overline{\times 2}$	$\times 2$	$\times 1.75$	$\overline{ imes 1.4}$	$\times 3$	$\times 1.45$	$\times 3$	$\times 3.8$	$\times 1.55$
Bicubic	30.01	30.83	31.40	27.25	27.88	27.27	27.45	28.86	27.94	25.93	24.92	25.19
RCAN [51]	34.14	35.05	35.67	30.35	31.02	31.21	29.35	31.30	29.98	30.72	28.81	$\overline{29.34}$
MetaSR-RCAN [19]	34.20	35.17	35.81	30.40	31.05	31.33	29.43	31.26	30.09	30.73	29.03	29.67
Arb-RCAN [46]	34.37	35.40	36.05	30.55	31.27	31.54	29.54	31.40	30.22	31.13	29.36	30.04
LTEW-RCAN (ours)	34.45	35.46	36.12	30.57	31.21	31.55	29.62	31.40	30.24	31.25	29.57	30.21

Homography transformation

Bicubic

Method	DIV2KW		${ m Set5W}$		${ m Set14W}$		B100W		$ { m Urban 100W} $		
	isc	osc	isc	osc	isc	osc			isc	osc	
				The state of the s						24.84	
		1								28.83	
	SRWarp-RRDB [42]	1									
	LTEW-RRDB (ours)	31.10	26.92	38.20	31.07	32.15	26.02	30.56	26.41	29.50	24.25

Qualitative comparison (ERP2Perspective)

Bicubic **LTEW**

ERP Image ($8190px \times 2529px$)

Model complexity (x2 SR with 256x256 input)

Method	Training	#Params.	Puntimo	Momory	i	n- $scale$	$out ext{-}of ext{-}scale$			
Wiethod	task	#Params.	Rumme	Memory	$\times 2$	$\times 3$	$\times 4$	$\times 6$	$\times 8$	
Arb-RCAN [46]	Asymmetric	16.6M	$160 \mathrm{ms}$	1.39GB	32.39	29.32	27.76	25.74	24.55	
LTEW-RCAN (ours)	-scale SR	15.8M	$283 \mathrm{ms}$	1.77GB	32.36	29.30	27.78	26.01	24.95	
SRWarp-RRDB [42]	Homography	18.3M	$328 \mathrm{ms}$	2.34GB	32.31	29.27	27.77	25.33	24.45	
LTEW-RRDB (ours)	transform	17.1M	285 ms	1.79GB	32.35	29.29	27.76	25.98	24.95	

Conclusion

LTEW-based neural function: Fourier basis + MLP

→ Arbitrary transformation with high-frequency details