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Deep Block Transform for Autoencoders
Kyong Hwan Jin

Abstract—We discover that a trainable convolution layer with
a stride over 1 and kernel ≥ stride is identical to a trainable
block transform. A block transform is performed when we use
a convolution layer with a stride ≥ 2 and a kernel ≥ the
stride. For instance, if we use the same widths, such as a
2 × 2 convolution kernel and stride-2, there are no overlaps
between sliding windows, so this layer operates a block transform
on the partitioned 2 × 2 blocks. A block transform reduces
the computational complexity due to a stride ≥ 2. To keep
the original size, we apply a transposed convolution (stride =
kernel ≥ 2), an adjoint operator of a forward block transform.
Based on this relationship, we propose a trainable multi-scale
block transform for autoencoders. The proposed method has an
encoder consisting of two sequential convolutions with stride-2,
a 2 × 2 kernel, and a decoder consisting of the encoder’s two
adjoint operators (transposed convolution). Clipping is used for
nonlinear activations. Inspired by the zero-frequency element in
the dictionary learning method, the proposed method uses DC
values for residual learning. The proposed method shows high-
resolution representations, whereas the stride-1 convolutional
autoencoder with 3× 3 kernels generates blurry images.

Index Terms—Block Transform, Image Representation, Au-
toencoder, Convolutional Neural Network

I. INTRODUCTION

RECENT convolutional neural networks [1], [2], [3] have
an odd-sized kernel convolution (ex. 3 × 3) with an

integer stride number as a basic unit. Convolutions with
stride ≥ 2 have natural sampling aliasing, resulting from
the Shannon-Nyquist sampling theorem [4]. However, aliasing
is reduced after nonlinear activations that take place after
convolution layers in common convolutional neural networks.
Here, we reinterpret convolutions with a stride ≥ 2 and kernel
≥ stride as a trainable block transform.

One well-known block transform is discrete cosine trans-
form (DCT) in JPEG image compression [5]. An 8 × 8 non-
overlapped patch is a coding unit for DCT transform [6].
This approach is advantageous for light computations, but it
frequently suffers from blocking artifacts. Such artifacts are
reduced by a deblocking filter [7]. Recently, block transforma-
tions have been exploited in the neural network researches [8],
[9]. However, these approaches require legacy transformations,
such as DCT and wavelet transform [10], to leverage block-
based operations.

In this letter, we discover that a trainable convolution layer
with a stride over 1 and kernel over stride number becomes
a trainable block transform. This implies that arbitrary multi-
scale convolutional neural networks using a stride over 1 are
generalized as block transforms, which have a unit block
approximated to the receptive field. Based on this property, we
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propose an efficient block transform network for autoencoders
with the same width to stride and kernel to reduce padding
errors from image boundaries. DC (zero-frequency) terms
calculated from receptive block size are subtracted from the
input and then given for the last layer as a skip-connection.

Our contributions are summarized as follows: (1) we dis-
cover a block transform from a convolutional layer of a
stride ≥ 2 and kernel size ≥ stride, (2) we propose an
autoencoder based on a trainable block transform, and (3)
we demonstrate that our autoencoder outperforms a stride-
1 convolutional autoencoder in terms of both quality and
computational complexity.

II. OBSERVATION

A. A Block Transform from a Convolution with a Stride
Greater than 2

Fig. 1. Examples are stride-2 convolutions. Each example has different kernel
sizes: (a) 2× 2, (b) 3× 3 and (c) 4× 4. Grey area means a processing unit.
FOV : field of view.

For simplicity, we explain stride-2 convolutions with single-
channel input and output. A linear convolution with stride 2
slides its field of view by an amount of 2 pixels as shown in
Fig.1. A convolution in Fig.1(a) has a 2×2 kernel, so an output
after the convolution is halved in both width and height:

f [u, v] =

s−1∑
n=0

s−1∑
m=0

k[n,m]x[s · u+ 1− n, s · v + 1−m], (1)

where x is a discrete input signal, k is a 2 × 2 kernel, s
is a stride (2 in this case), and f is a discrete output. The
output, f , comes from each 2 × 2 block without overlaps.
This implies that a convolution with the same kernel size
(k × k) and stride (k) becomes a block transform on k × k
blocks, which do not need to be orthogonal bases as in
DCT [6]. Such equivalence between a block transform and
a convolution with the same kernel size (k × k) and stride
(k) is still valid with multiple output channels or a transposed
convolution because non-overlap sliding is still maintained in
a multi-channel or transposed operator. When a given kernel
is larger than a stride, such as in Fig.1(b) and (c), the block
transform is operated with surrounding pixels at the block’s
edges. Surrounding pixels compensate for blocking artifacts.
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A receptive field in a block transform is calculated as a
multiplication between the stride and the kernel’s pitch.

B. Error Back-propagation from Boundaries

Fig. 2. (a) Conventional convolution with kernel size of 3 after zero-padding
and (b) a convolution with stride of 2 and kernel size of 2; this becomes a
block transform. ZP : zero-padding, Conv : 2D convolution layer, s : stride.

We review the back-propagation of the trainable block
transform. We analyze the two cases shown in Fig. 2: an odd-
sized convolution of 3× 3, and an even-sized block transform
with a 2 × 2 kernel followed by an adjoint block transform.
In matrix-vector form, a 2-D convolution operation becomes a
block Toeplitz matrix (row-reversed block Hankel matrix [11]).
When a signal s ∈ RH×W×I passes through a convolution
layer, as in Fig. 2 (a), this is described in matrix-vector format
as

~o = CZ~s, (2)

where C ∈ RHWO×(H+2)(W+2)I is a block Toeplitz ma-
trix, ~· is a vectorization of a multi-dimensional signal,
Z(H+2)(W+2)I×HWI is a matrix producing zero-padded vec-
tor, and ~o is a corresponding vectorized output signal. When
this convolutional layer is updated through back-propagation,
δ ∈ RH×W×O from a post layer is applied by the chain rule
to calculate ∂L

∂C (L is the loss function) given by

∂L

∂C
=
∂L

∂~o

∂~o

∂C
= ~δ(Z~s)T = ~δ~sTZT . (3)

This is an updating term for a convolutional layer, but it un-
dergoes a transposed zero-padding operation (Z) which makes
additional errors by inserting zero-rows (4I + 2HI + 2WI).

On the other hand, if a signal s ∈ RH×W×I goes through a
proposed block transform layer, as in Fig. 2 (b), this is given
as

~o = BbR(
~a︷︸︸︷
Ba~s )︸ ︷︷ ︸
~z

, (4)

where Ba ∈ RHWM/4×HWI is a block Toeplitz matrix, Bb ∈
RHWO×HWM/4 is a transposed block Toeplitz matrix, and
R is a ReLU. Similar to Eq.3, when we update our block
transform using the chain rule, the updating term is given by

∂L

∂Ba
=

∂L

∂~o

∂~o

∂~z

∂~z

∂~a

∂~a

∂Ba
= BTb ~δ (R (~s ))

T
, (5)

∂L

∂Bb
=

∂L

∂~o

∂~o

∂Bb
= ~δ~zT = ~δ (R (Ba~s ))

T
, (6)

where ~b is B~s. ReLU has itself as the derivative ( ∂~z∂~a = R(·)).
Here, Ba and Bb are non-overlapped convolution/transposed
convolution matrices, so it is full-rank leading to no addi-
tional errors coming from a rank-deficient matrix, such as Z.
Thus, trainable block transforms with non-overlapped kernels
operate back-propagations without errors on gradients related
to zero-padding.

C. Computational Complexity

Given x ∈ RH×W×I , a convolution with a kernel size of
3 in Fig. 2(a) takes O(32 · HWIO). On the other hand, the
block transform with a kernel size of 2 in Fig. 2(b) spends
O(HWM(I + O)). With the same input, a block transform
shows less computational complexity than a convolution ap-
proximately 4.5 times faster when I = O.

III. METHOD

A. DC (zero-frequency) Map as Residual Skip

To keep the energy of zero-frequency of a patch, K-SVD
[12] uses constant dictionary elements. Inspired by the DC
basis of K-SVD, DC values with respect to the receptive block
size are subtracted from the input, and we pass it over to the
last layer for restoring the original energy of the processing
blocks. In practice, we calculate DC values by 2D average
pooling with the stride of the receptive block size. The nearest
neighborhood interpolation fits DC values into the output size.

Layers Channel Kernel Strides Output
(XYC) (XY) (XYC)

Input H ·W · 1
−DCS2 (Input) H ·W · 1

Conv+clip C S × S × 1 S × S H/S ·W/S · C
Conv+clip LC S × S × C S × S H/S2 ·W/S2 · LC

ConvT +clip C S × S × LC S × S H/S ·W/S · C
ConvT 1 S × S × C S × S H ·W · 1

+DCS2 (Input) H ·W · 1

TABLE I
PROPOSED MULTI-SCALE BLOCK TRANSFORM. WE DENOTE THE

PROPOSED METHOD AS BTN/DC-K-S. K : KERNEL, S : STRIDE, LC :
NUMBER OF CHANNELS FOR LATENT SPACE, CLIP : CLIPPING IN EQ. (7)

B. Non-overlap Multi-Scale Block Transform

Recall that we construct a trainable block transform by using
a stride of more than 2 and a kernel size that is greather
than the stride. Here, we propose a trainable multi-scale block
transform using non-overlapped block transforms (Table. I).
An encoder calculates DC values for each receptive block
size and subtracts these from the input. Then, two convolution
layers of (stride = kernel) ≥ 2 without zero-padding follow,
as in Table. I. The clipping function followed by a convolution
is defined as

c(x) =

{
|x| · sign(x) if |x| < 1,

sign(x) if |x| ≥ 1.
(7)

A decoder transforms latent features with two sequential
transposed convolutions with (stride = kernel) ≥ 2. Again,
clipping in Eq. (7) follows transposed convolution. Our net-
work has no padding, leading to error-free backpropagation, as
explained in Sec.II-B. At the last layer, DC values are added.
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A trainable block transform becomes a fully connected layer
when a kernel size and a stride size are the same as the input
size. Thus, a multi-scale block transform is limited by the
performance of a full-size fully connected layer.

IV. EXPERIMENTS

We used a stride-1 convolutional autoencoder (de-
noted as ‘AE’) as a baseline: Cv(st:1,kr:3), M(st:2),
Cv(st:1,kr:3), M(st:2), Cv(st:1,kr:3), B(st:2), Cv(st:1,kr:3),
B(st:2), Cv(st:1,kr:3,c:1), where st is the stride, kr is the kernel
size, c is the output channel size, Cv is the 2D convolution
layer, M is the a 2D max-pooling layer, and B is bilinear
interpolation. ReLU followed convolution except for the last
layer. Block transform networks without both DC subtrac-
tion and skip-connection were also compared: [BTN-3-2]
Cv(st:2,kr:3), Cv(st:2,kr:3), CvT (st:2,kr:3), CvT (st:2,kr:3,c:1),
and [BTN-4-2] Cv(st:2,kr:4), Cv(st:2,kr:4), CvT (st:2,kr:4),
CvT (st:2,kr:4,c:1). ReLU followed after convolution except for
the last layer. BTN-3-2 and BTN-4-2 cropped boundaries after
convolution or transposed convolution to keep the original size.

A. Study1: Numerical Simulation

To verify the benefit of the padding-free property, we
assessed our approach (‘BTN/DC-2-2’, C:12, LC:12) and
baselines (C:12, LC:12) with 64×64 numerical images which
had 4 lines with different widths at every boundary. Six
generated images were ternary (0, 0.5, 1), and a Euclidean
norm was used for a loss. The training/test set was the same
in this case (overfitting). The number of epochs was 50, and
an Adam optimizer was used with a learning rate of 10−3.

B. Study2: Convolutional Autoencoder

We studied the different autoencoder architectures be-
tween a stride-1 convolution and a block transform using
overlapped/non-overlapped convolution. The training loss was
a Euclidean norm. An Adam optimizer was used with a
learning rate of 10−3. The total number of elements in the
latent space was smaller than the original input size [3]. We
calculated the peak signal-to-noise ratio (PSNR) on the testset
and simulated 10 experiments to obtain the average PSNR.

1) Fashion MNIST: We used the Fashion MNIST dataset
[13] to compare the performance of block transforms and a
convolutional autoencoder. We used 12 channels in both the
latent space and feature space. The number of epochs was 10,
and the batch size was 32.

2) BSDS500: The BSDS500 dataset [14] was used for
training. The splitting ratio between the training and validating
sets was 4:1. We used 8 channels in both the latent space
and feature space. The batch size was 8, the training patch
size was 256×256, and the number of epochs was 100. Only
the Luma component (Y) was used as a feeding input. The
output of ’BTN’, Y, was merged with the original Chroma
channels (U,V). An ablation study according to the total
number of trainable parameters versus PSNRs was conducted
with various numbers of channels (C = 4, 8, 16, 32) and is
presented in Fig.5.

V. RESULTS

A. Study1: Numerical Simulation

Fig. 3. Numerical simulation results.

As seen in Fig. 3, the proposed method achieved almost
perfect reconstruction, whereas the convolutional autoencoder
with stride 1 generated ringing artifacts around lines and
boundaries. Table II shows the numerical results. In terms
of the total number of parameters (Table. II), the proposed
method has the smallest numbers.

C:12, LC:12 AE BTN-3-2 BTN-4-2
BTN/DC-2-2
(Proposed)

# of Param. 4,153 2,845 5,029 1,285
Study1 (dB) 31.64 56.65 52.36 105.24
Fashion (dB) 21.38 31.54 31.97 33.67
Time (msec) 75.8 29.9 35.9 26.0

TABLE II
PSNR SUMMARIES FROM NUMERICAL PHANTOMS AND FASHION MNIST.

# OF PARAM. IS THE TOTAL NUMBER OF TRAINABLE PARAMETERS.

B. Study2: Convoultional Autoencoder

1) Fashion MNIST: Table II shows the results of the
Fashion MNIST experiments. As seen in Fig. 4, AE decoded
blurred images; however, the proposed method showed de-
tailed textures with better PSNRs than the baselines in Table
II. Computational times for 104 samples are reported at the
last row in Table II (Tesla T4).

BTN-2-2 +ReLU +Tanh +DC +DC+clip
C:8, LC:8 +Leaky +clip +RelU (Proposed)
BSDS400 30.47 32.01

32.42 33.28
(dB) 32.10 32.20

TABLE III
ABLATION STUDIES WITH BSDS500 DATASET. LEAKY : LEAKY

RELU,TANH : HYPERBOLIC TANGENT.

2) BSDS500: Table III shows the results of ablation stud-
ies on the combinations of nonlinear activation and skip-
connection. The proposed method achieved the best recon-
struction. The graph in Fig. 5 shows the PNSRs of the
BSDS500 test images on various numbers of channels (C =
4, 8, 16, 32) for baselines. As seen in the figure, the proposed
method achieved the best performance even with a smaller
number of trainable parameters than other baselines. Fig. 6
shows that AE decoded blurry images again; however, the
proposed method showed the face of a tiger clearly, in an
image that is close to the ground-truth.
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Fig. 4. Fashion MNIST results. Second row shows images from autoencoder(AE) comprised of 3 × 3 convolutional layers of stride 1. Third row shows
images from the proposed block transform network consisting of 2× 2 convolution/convolution-transpose layers of stride 2.

Fig. 5. Error plots for representation of BSDS500 test images (LC : 8).
Channel C is (4, 8, 16, 32). Circles mean averaged values for each channel.
Error bars mean minimum and maximum PSNRs around mean values.

Fig. 6. Representation of a test image in BSDS500 (LC : 8, C:16)

VI. CONCLUSION

We discovered that a convolution layer with a stride ≥ 2 and
a kernel size ≥ stride becomes a block transform. We proposed
an autoencoder based on the trainable block transform instead
of using stride-1 convolution layers. By using the same size

for both the stride and kernel, the proposed network is free
from padding operations, leading to error-free backpropaga-
tion. Clipping is followed by each convolution. We subtract
block DC values from the input and add them to the output
through a skip-connection to restore the zero-frequency en-
ergy of blocks. We demonstrated that the proposed method
outperforms a stride-1 convolutional autoencoder. We believe
that the trainable block transform could be used for solving
inverse problems such as denoising, inpainting, etc.
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