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Grid-Free Localization Algorithm Using Low-rank
Hankel Matrix for Super-Resolution Microscopy
Junhong Min, Kyong Hwan Jin, Michael Unser, Fellow, IEEE, and Jong Chul Ye, Senior Member, IEEE

Abstract—Localization microscopy, such as STORM / PALM,
can reconstruct super-resolution images with a nanometer reso-
lution through the iterative localization of fluorescence molecules.
Recent studies in this area have focused mainly on the localization
of densely activated molecules to improve temporal resolutions.
However, higher density imaging requires an advanced algorithm
that can resolve closely spaced molecules. Accordingly, sparsity-
driven methods have been studied extensively. One of the major
limitations of existing sparsity-driven approaches is the need
for a fine sampling grid or for Taylor series approximation
which may result in some degree of localization bias toward
the grid. In addition, prior knowledge of the point-spread
function (PSF) is required. To address these drawbacks, here we
propose a true grid-free localization algorithm with adaptive PSF
estimation. Specifically, based on the observation that sparsity in
the spatial domain implies a low rank in the Fourier domain,
the proposed method converts source localization problems into
Fourier-domain signal processing problems so that a truly grid-
free localization is possible. We verify the performance of the
newly proposed method with several numerical simulations and
a live-cell imaging experiment.

Index Terms—Super-resolution microscopy, annihilating filter,
Low-rank matrix completion, Matrix pencil, Source Localization

I. INTRODUCTION
Localization microscopy such as STORM/PALM [1–3] can

achieve super-resolution (SR) imaging beyond the diffraction
limit with far-field optics. This breakthrough in the resolution
results from the following: 1) the localization precision of
a single molecule is not diffraction-limited, and 2) fluo-
rescence molecules can be activated sparsely at each time
frame by separating molecules in space and time. Accord-
ingly, non-overlapping activated molecules can be localized
to the nanometer accuracy by detecting their centroids. After
repeating this process until enough molecules are localized,
a final SR image is constructed. However, conventional low-
density acquisition schemes are associated with long acqui-
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sition times required to collect numerous non-overlapping
fluorescent molecules. This compromise between the spatial
and temporal resolutions represents the imaging limitation
of conventional localization microscopy systems for live-cell
imaging.

In order to improve the temporal resolution, high-density
(HD) imaging techniques have been developed [4]. They ac-
quired raw data with higher molecular densities such that more
molecules can be localized within a time frame, resulting in
an accelerated temporal resolution. However, the localization
task becomes more difficult because a raw image frame is
likely to contain many overlapping PSFs. Several localization
methods [4–12] have been proposed to resolve closely spaced
molecules with overlapping PSFs. These algorithms are mostly
based on the use of sparsity in the image domain. For example,
multi-emitter fitting methods [4,5] fit multiple PSFs to the
data by increasing the sparsity in a greedy manner. On the
other hand, one method [6] used image deconvolution by
imposing sparsity-priors such as the Laplacian prior, and
another [7] considered more precise statistical models of the
camera noise and photo-physics of fluorescence molecules.
These deconvolution methods have shown better localization
results than previous greedy methods: however, one of the
main limitations of the sparsity-driven reconstruction methods
is that spatial resolution is limited to the reconstruction grid.

Instead of relying on a finely sampled grid, one study [9]
proposed what was termed the FAst Localization algorithm
based on a CONtinuous-space formulation (FALCON) for
high-density SR microscopy data with the Taylor series ap-
proximation of PSFs on a coarser grid. Although these meth-
ods can address the problem of high density (HD) localization,
there are still many remaining technical issues. For example,
FALCON relies on the accuracy of the initial estimation on a
fixed grid to establish accurate Taylor series approximations.
Therefore, bias remains on the estimated offset, as will be
shown later in actual experiments. Second, most existing
2D localization methods use a fixed PSF model which is
usually estimated from additional low-density data containing
isolated PSFs [6–9,11]. During the early days of localization
microscopy, experiments were usually performed on the total
internal reflection fluorescence (TIRF) where a single 2D
PSF model was usually applied to process all of the camera
frames. However, more recently, localization microscopy is
often implemented using a modified type of TIRF microscopy
with the longer depth of field [13]. In addition, there has been
growing demand for super-resolution imaging with various
experimental protocols, including live-cell imaging. Due to
the spatial fluctuations of cells in live-cell imaging, it is
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expected that the focused region may vary in terms of space
and time. Accordingly, the need for localization microscopy
data with varying PSF estimations exists to deal with imaging
conditions not well-represented by a fixed 2D PSF model [6–
9,11]. In addition, for better reconstruction at a low SNR
typical in live-cell imaging, a suitable noise and signal model
beyond the Gaussian may be incorporated with the imaging
algorithm. Finally, there exist inter-frame correlations due to
the stochastic physics of the fluorescence probe, which can be
exploited to increase the localization accuracy.

In order to address these problems, here we propose a
truly grid-free 2D localization algorithm with data-driven local
PSF estimation as a penalized maximum likelihood estimator
(MLE) under Poisson loglikelihood that can also exploit
the temporal correlation of probes. The algorithm is based
on the recently proposed annihilating filter-based low-rank
Hankel structure matrix approach [14–16], which has been
successfully applied to many imaging applications, such as
MRI [15,17–21], image in-painting [22], image de-noising
[23], and nuclear magnetic resonance (NMR) spectroscopy
[24], as well as others [25,26]. This algorithm exploits the
special structure of the Fourier spectrum of a signal with a
finite rate of innovation (FRI) [27,28].

More specifically, if the spectral data of the FRI signals is
lifted to a Hankel-structured matrix with a suitable weighting,
the matrix has a low rank [14,15,29–32]. Because the fluo-
rophores can be considered to have an infinitesimal size, they
can be modeled as delta functions, which are a typical example
of FRI signals. Accordingly, the sparsity of activated fluo-
rophores at the nanoscale resolution can be exploited as a low-
rank constraint of a Hankel-structured matrix in the spectral
domain, which can be used efficiently to deconvolve the data
in the Fourier domain. More specifically, the PSF estimation
problem can be converted into a spectral weighting estimation
problem that finds a parameter that leads to the structure with
the lowest rank. Patch-by-patch processing can therefore be
performed to track the spatio-temporal variations of PSFs.
In contrast to most existing localization algorithms operating
on a discrete image grid, our algorithm directly recovers the
Fourier coefficients of a sparse signal in a continuous domain.
Therefore, the estimation of the fluorescent probe location can
be done in a truly grid-free manner using a harmonic retrieval
method. Specifically, we estimate spatial positions from the
recovered Fourier coefficients by applying a subspace-based
harmonic retrieval algorithm known as algebraically coupled
matrix pencils (ACMP) [33]. This converts the MLE prob-
lem into an all-Fourier-domain formulation under low-rank
structured-matrix constraints. Moreover, this Fourier-based
approach allows the collaborative reconstruction of multiple
consecutive data frames, resulting in higher reconstruction
performance.

We are aware of a recent work, which is also based on
Fourier-domain processing [11]. Specifically, the authors re-
covered the Fourier spectrum via direct inverse filtering with a
given PSF and then estimated the probe locations by applying
a matrix pencil algorithm known as matrix enhancement
and matrix pencil (MEMP) [34]. Although this method is
computationally fast, it is sensitive to noise, as direct inverse

filtering generally enhances high frequencies. In addition, it
uses a fixed PSF model. In contrast, our method fully utilizes
the noise model and adaptively estimates the PSFs, making it
more general and more robust.

The paper is organized as follows. We begin with the theory
and problem formulation of localization microscopy in Section
II. The proposed algorithm is presented in Section III. Then,
numerical and experimental results are shown in Section IV.
Finally, we discuss several issues and conclude the paper.

II. MATHEMATICAL PRELIMINARIES

A. Notation

Throughout the paper, the bold lower-case character (e.g.
x,y) represents a vector. The i-th elements of a vector x is
represented by x[i] or xi. Moreover, xi and xj correspond to
the i-th row and the j-th column of matrix X , respectively.

A Hankel-structured matrix generated from an n-
dimensional vector x = [x1 · · ·xn]T ∈ Cn has the following
structure:

H (x) =


x[1] x[2] · · · x[d]
x[2] x[3] · · · x[d+ 1]

...
...

. . .
...

x[n− d+ 1] x[n− d+ 2] · · · x[n]

 . (1)

We denote the space of this type of Hankel structure matrices
as H(n, d). A stream of Dirac impulses is defined by

x(t) =
K∑
k=1

skδ(t− tk),

where δ(·) denotes the Dirac delta function, and {tk} are
the locations of the Dirac impulses. Then, we define its l0-
counting function ‖x‖0 by counting the number of Dirac
impulses.

B. Forward Model

For the noiseless case, the measurement u(r), r ∈ Rd
(d = 2, or 3 for two- or three- dimensional problems,
respectively) on the image planeM through an objective lens
can be described by the integral equation:

u(r) =

∫
O
dr′a(r, r′)x(r′) , r ∈M, (2)

where x(r′) denotes a specimen on the object space O, and
a(·, r′) is the point-spread function (PSF) from an infinitesimal
source at r′. In addition, for fluorescence imaging, x(r′), r′ ∈
O can be described by

x(r′) = uex(r′)η(r′) (3)

where uex(r′) denotes the optical flux at the excitation wave-
length of the fluorophore, and η(r′) is the fluorescent yield.

In super-resolution microscopy, fluorescent probes are com-
monly viewed as infinitesimal point light sources distributed
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over cell organelles. Therefore, if we consider K-sparse flu-
orescent probes, the unknown fluorescent distribution can be
modelled as a stream of Dirac impulses:

x(r′) =
K∑
k=1

skδ(r
′ − rk), (4)

where sk denotes the fluorescent intensity. Note that (4) is a
special case of FRI signals (see [14,27] for more details). In
the super-resolution microscopy experiments, several temporal
frames are acquired, as the fluorescent intensity {sk} changes
with the temporal frames.

Thus far, the measurements at all spatial coordinates of
the detector plane M have been modeled. However, in the
presence of pixelation, the acquired data consist of the number
of detected photons at each pixel. If we consider a pixelated
detector with M pixels, the data model describing image
acquisition by the m-th detector is then given by

um =

∫
Cm

dr

∫
O
dr′a(r, r′)x(r′), m = 1, · · · ,M (5)

where Cm denotes the m-th detector area on M.

C. Existing Penalized Maximum Likelihood Approaches

In most existing approaches, the object space O is dis-
cretized into N voxels so that x ∈ RN becomes a discretized
unknown fluorophore distribution vector. Additionally, Eq. (5)
is approximated as

um '
N∑
j=1

amjxj (6)

where
amj =

∫
Cm

a(r, r′j)dr, xj = x(r′j)

and r′j denotes the j-th voxel location on the object space.
Suppose, furthermore, that y ∈ RM denote the detector
measurements, and A = [aij ]

M,N
i,j=1. Then, the negative loglike-

lihood function from Poisson intensity measurements is given
by:

L(x) = 1T (Ax + b)− yT log(Ax + b) (7)

where b is the background fluorescent distribution originating
from the autofluorescence, 1 denotes a vector with elements
of ones of an appropriate size and log(·) is treated as an
element-by-element operation. Subsequently, the conventional
estimation task can be formulated as the following minimiza-
tion problem:

min
x
J(x) where J(x) = L(x) + pen(x) , (8)

where the function pen(x) imposes a penalty to guide the
reconstruction.

One of the technical difficulties related to minimizing L(x)
in Eq. (7) is the non-separability of the likelihood term,
i.e. log (Ax). Figueiredo and Bioucas-Dias [35] proposed
the PIDAL (Poisson image deconvolution by augmented La-
grangian) algorithm using the alternating direction method
of multipliers (ADMM) without approximating the Poisson

loglikelihood. In PIDAL, the PSF matrix was assumed to be
spatially invariant, allowing the fast Fourier transform (FFT) to
be used for rapid computation of matrix vector multiplications.

However, existing deconvolution approaches have limita-
tions on super-resolution microscopy. Firstly, accuracy of the
approximation (6) is strongly dependent on the sampling grid,
meaning that very fine discretization is required. Secondly,
existing approaches usually adopt spatially invariant PSF,
which is typically obtained from an additional PSF measure-
ment experiment. Accordingly, these methods cannot take into
account the fact that a PSF can vary with the spatial location
and time due to the extended acquisition time, movements
of the sample, and the instability of the sample holders.
Accordingly, the accuracy of existing reconstruction methods
can deteriorate.

Below, we use the variable splitting technique of PIDAL
for our all-Fourier domain optimization. However, variable
splitting is not our main contribution. Specifically, any type
of variable splitting method beyond those of PIDAL can be
incorporated into our all-Fourier formulations to address the
aforementioned problems. For example, the algorithm can be
combined with a Poisson ML estimator using a concave-
convex procedure (CCCP) [8].

III. THEORY

In order to solve the above-mentioned limitations, we pro-
pose a Fourier-domain formulation of a penalized ML using
the adaptive PSF estimation technique, which allows truly
grid-free localization. For the sake of simplicity, we derive
the algorithm using a 1-D signal model; the 2D formulation
will be discussed later.

A. Fourier-Domain Formulation of Penalized ML

In our approach, (7) is solved in a patch-by-patch manner.
However, by estimating the PSF for each patch, a spatially
varying PSF can be addressed. Without a loss of generality,
the detector pitch is assumed to be 1. Hence, pixelated detector
measurement on the m-th detector is modeled by

um = (p ∗ a ∗ x)(m) =

∫
O

∫
O
drdr′p(m− r)a(r − r′)x(r′),

where ∗ denotes a continuous-domain convolution and p(r) is
a rectangular function given by

p(r) =

{
1, |r| < 1/2,

0, otherwise.

Therefore, with u = [u1 · · ·uM ]T , the penalized ML estima-
tion problem for the estimation of the stream of K- Dirac
impulses becomes:

min
u

1T (u + b)− yT log(u + b) (9)

subject to um = (p ∗ a ∗ x)(m), m = 1, · · · ,M
‖x‖0 ≤ K

where ‖x‖0 denotes the number of Dirac impulses.
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The minimization problem in (9) is solved using ADMM, as
is done in PIDAL [35]. Specifically, the associated Lagrangian
is given by

L(s,u,λ) = 1T (u + b)− yT log(u + b)

+
α

2

M∑
m=1

|um − (p ∗ a ∗ x)(m) + λm|2, ‖x‖0 ≤ K

with the corresponding subprograms then as follows:

z(k)m = (p ∗ a ∗ x(k))(m)− λ(k)m

u(k+1)
m = arg min

um>−bm
{um − ym log(um + bm)

+
α

2
|um − z(k)m |2

}
(10)

=
1

2

z(k)m − bm −
1

α
+

√(
z
(k)
m + bm −

1

α

)2

+
4ym
α



x(k+1) = arg min
x,‖x‖0≤K

M∑
m=1

|u(k+1)
m − (p ∗ a ∗ x)(m) + λ(k)m |2 (11)

λ(k+1)
m = u(k+1)

m − (p ∗ a ∗ x(k+1))(m) + λ(k)m . (12)

Although we use variable splitting in a manner similar to
that in PIDAL for Poisson noise, the main difference of the
proposed algorithm is that the purpose of the present task
is to recover a continuous-domain signal composed of Dirac
impulses. Hence, a method to solve subprogram (11) without
discretization is required. Accordingly, rather than solving
subprogram (11), we convert it to an equivalent Fourier-
domain problem. Toward this, we need the following result:

Proposition 1. Suppose that ym has finite support, i.e. ym = 0
when m ∈ Z \ [1, · · · ,M ] and the detector pitch is 1. Then,
we have

M∑
m=1

|ym − (p ∗ a ∗ x)(m)|2 = (13)

1

2π

∫
2π

∣∣∣ŷ (ejω)−∑
n∈Z

p̂(ω+2πn)â(ω+2πn)x̂(ω+2πn)
∣∣∣2dω.

where ŷ
(
ejω
)

is the discrete time Fourier transform (DTFT) of
the sequence ym; and p̂(ω), â(ω), and x̂(ω) are the continuous
time Fourier transform (CTFT) of p, a and x, respectively.

Proof. Since the detector pitch is 1, the normalized frequency
in DTFT is equal to the frequency in the CTFT domain.
Therefore, the effect of the sampling for (p ∗ a ∗ x)(t) is a
2π periodization in the frequency domain. The final step of
the proof is to use the Parseval’s relationship in DTFT. This
concludes the proof.

If we also assume that the modulation transfer function â(ω)
is bandlimited, then the 2π periodic copies do not overlap and
Eq. (13) is further simplified to

M∑
m=1

|ym − (p ∗ a ∗ x)(m)|2 = (14)

1

2π

∫
2π

∣∣∣ŷ (ejω)− p̂(ω)â(ω)x̂(ω)
∣∣∣2dω.

Given the bandlimited PSF, even if the spectrum of the stream
of Dirac impulses is not bandlimited, (14) still holds. Next,
because the ym signals are assumed to be finite-supported, we
can sample the Fourier grid at the Nyquist sampling rate so
that

M∑
m=1

|ym−(p∗a∗x)(m)|2 = A
M∑
k=1

∣∣∣ŷ[k]−p̂[k]â[k]x̂[k]
∣∣∣2 (15)

where ŷ[k], p̂[k], â[k] and x̂[k] are sampled value of
ŷ
(
ejω
)
, p̂(ω), â(ω) and x̂(ω) at ω = 2πk/M , respectively.

Note that the constant A comes from the frame bound of
the sinc interpolation kernel, which is tight. This instance of
spectral domain discretization is equivalent to the imposition
of the periodic repetition onto the image-domain signal. This
creates the stream of Dirac impulses periodic with a period
of M , which is a mandatory step in the FRI signal model
[27]. At this stage, the next question concerns how to impose
the continuous-domain constraint ‖x‖0 ≤ K in the Fourier
domain. To do this, we need the following key result from
[14]:

Theorem 2 [14]. Let K + 1 denotes the minimum size of
annihilating filters that annihilate the discrete Fourier data
x̂[k]. Assume that min(n− d+ 1, d) > K. Then, for a given
Hankel-structured matrix H (x̂) ∈ H(n, d) constructed using
x̂ = [x̂[1], · · · , x̂[n]] , we have

RANK (H (x̂)) = K, (16)

where RANK(·) denotes a matrix rank.

Specifically, for the stream of Dirac impulses in (4), the
minimum-length annihilating filter ĥ[k] has the following z-
transform representation [27]:

ĥ(z) =
K∑
l=0

ĥ[l]z−l =
K−1∏
j=0

(1− e−i2πtj/τz−1) (17)

whose length is K + 1. Therefore, the associated Hankel
matrix should have rank K from Theorem 2. By combining
all of these components, the spectral domain formulation of
the subprogram (11) is

x̂(k+1) = arg min
x̂∈CH

‖û(k+1) − p̂� â� x̂ + λ̂(k)‖2

+λRANK (H (x̂)) ,

where CH denotes the set of Hermitian symmetric spectra
because the image-domain counterpart should be real-valued.

Because direct rank minimization is a non-convex opti-
mization problem, we will relax the constraint by minimizing
the nuclear norm of this matrix. In this paper, we employ a
factorization-based rank minimization algorithm [36] that does
not involve the singular value decomposition. The algorithm
is based on the following observation [37]:

‖A‖∗ = min
U,V :A=UV H

‖U‖2F + ‖V ‖2F , (18)
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where U ∈ C(n−d+1)×r, V ∈ Cd×r and r ≥ K Hence,
(11) can be reformulated as the nuclear norm-minimization
problem under the matrix-factorization constraint:

min
x̂∈CH ,U,V

1

2
‖ŷ − p̂� â� x̂‖2 +

λ

2

(
‖U‖2F + ‖V ‖2F

)
subject to H (x̂) = UV H , (19)

where ŷ = û(k+1) +λ(k). With an additional step of ADMM
[38], we have the following cost function:

L(U, V, x̂,Λ) :=
1

2
‖ŷ − p̂� â� x̂‖2 +

λ

2

(
‖U‖2F + ‖V ‖2F

)
+
µ

2
‖H (x̂)− UV H + Λ‖2F (20)

One of the advantages of the ADMM formulation is
that each subproblem is simply obtained from (20). More
specifically, x(n+1), U (n+1) and V (n+1) can be obtained,
respectively, by applying the following optimization problems
sequentially:

x̂(n+1) = (21)

min
x̂∈CH

1

2
‖ŷ− p̂� â� x̂‖2 +

µ

2
‖H (x̂)−U (n)V (n)H + Λ(n)‖2F

U (n+1) =

arg min
U

λ

2
‖U‖2F +

µ

2
‖H (x̂(n+1))− UV (n)H + Λ(n)‖2F

V (n+1) =

arg min
V

λ

2
‖V ‖2F +

µ

2
‖H (x̂(n+1))− U (n+1)V H + Λ(n)‖2F

with the Lagrangian update then given by

Λ(n+1) = H (x̂(n+1))− U (n+1)V (n+1)H + Λ(n) .

It is easy to show that without the constraint of Hermitian
symmetry, the step in (21) results in the following intermediate
step

f̂ (n+1)[i] =

(â[i]∗p̂[i]∗ŷ[i]) + µPi
(
H ∗ (U (n)V (n)H − Λ(n)

))
|â[i]p̂[i]|2 + µPi(H ∗H (ei))

,

where ei denotes the unit coordinate vector where the i-th
element is 1, and Pi is the projection operator of the i-
th coordinate. Then, by imposing the Hermitian symmetry
constraint, x̂(n+1) is given as

x̂(n+1) = PH(f̂ (n+1)),

where PH is the projection operator on a space of matrices
with Hermitian symmetry.

The subproblems for U and V are easily solved by taking
the derivative with respect to each matrix, and thus we have

U (n+1) =

µ
(
H (x̂(n+1)) + Λ(n)

)
V (n)

(
λI + µV (n)HV (n)

)−1
V (n+1) =

µ
(
H (x̂(n+1)) + Λ(n)

)H
U (n+1)

(
λI + µU (n+1)HU (n+1)

)−1
Note that the computational complexity of our ADMM algo-
rithm is dependent on these matrix inversions, whose com-
plexity is determined by the estimated rank of the structured
matrix. Therefore, even when the structured matrix is large,
the estimated rank can be much smaller, which significantly
reduces the overall complexity.

In summary, the original ADMM formulation for the pe-
nalized ML formulation can be equivalently converted to the
Fourier-domain formulation as follows,

z(k) = F−1
(
p̂� â� x̂(k) − λ(k)

)
(22)

u(k+1)
m =

1

2

z(k)m − bm −
1

α
+

√(
z
(k)
m + bm −

1

α

)2

+
4ym
α

 (23)

x̂(k+1) = arg min
x̂∈CH ,H (x̂)=UV H

1

2
‖û(k+1) − p̂� â� x̂

+λ̂(k)‖2 +
λ

2

(
‖U‖2F + ‖V ‖2F

)
(24)

λ̂(k+1) = û(k+1) − p̂� â� x̂(k+1) + λ̂(k) (25)

Here, except for the second step, the remaining deconvolution
steps are done in the Fourier domain.

Note that the alternating direction method of multipliers
(ADMM) is widely used to solve large-scale linearly con-
strained optimization problems, convex or nonconvex, in many
engineering fields. Specifically, the convergence of the ADMM
algorithm to minimize the sum of two or more nonsmooth
convex separable functions has been well-studied, and Hong
and Luo [39] proved the linear convergence of a general
ADMM algorithm with any number of blocks under linear
constraints. However, (19) is not convex due to the bi-linear
term for Hankel matrix factorization using U and V . There-
fore, we cannot directly use the results by Hong and Luo
[39]. For nonconvex problems, we are aware that Hong et
al. [40] and Li et al. [41] showed that the ADMM algorithm
converges to the set of stationary solutions, but our problem
does not fit this setting. Therefore, rather than claiming a
convergence guarantee in relation to our problem, here we
rely on our empirical results, which consistently show the
convergent behaviour. The rigorous proof of the convergence
is important but beyond the scope of the current paper.

B. Advantages of Fourier-Domain Formulation

There are several important advantages when using the
Fourier-domain formulation of a penalized ML. First, if there
are variations of 2-D PSF functions with small z-directional
fluctuations in the fluorophore distribution, we can easily
estimate the varying 2D PSF by means of spectral domain
processing. More specifically, the most widely used 2-D PSF
model is Gaussian function. Specifically, a symmetric Gaus-
sian function is used so that different PSFs can be created by
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adjusting a single parameter σ. Accordingly, the Gaussian PSF
model is given with the following approximation:

hσ ' p ∗ a

where the single parameter σ is determined by an optical set-
up as well as a slight variation of axial locations of probes.

In noiseless case, the Fourier domain spectrum x̂σ[k] can
be then obtained by applying an inverse filter

x̂σ[k] =
ŷ[k]

ĥσ[k]
, (26)

where ĥσ[k] denotes the Fourier spectrum of hσ . As we have
already shown, the sparsity of the continuous-domain signal
x(r) can be equivalently represented by the low-rankness of
the Hankel matrix, which is constructed from spectral domain
samples. Therefore, we search the parameter σ that minimizes
the rank of the Hankel matrix H {x̂σ}:

σo = arg min
σ>0

RANK (H {x̂σ}) , (27)

which provides the optimal parametric PSF estimation.
The second advantage of the Fourier-domain formulation

is that the initialization of the U and V matrices can be
readily combined with the PSF estimation. In (20), the column
dimensions of U and V represent the upper-bound of the
rank of the Hankel matrix. Therefore, they should be properly
estimated. For the initialization of the U and V matrices,
instead of using an inverse filter as in (26), a Wiener filter is
used to avoid noise boosting in order to estimate the denoised
spectral data:

x̂w[k] =
ĥ∗σo [k]ŷ[k]

|hσo [k]|2 + ε
.

with an appropriate value of ε > 0. The initial U and V
matrices are then obtained as a low-rank factorization of
H {x̂w} by monitoring its singular-value spectrum.

Lastly, after the deconvolution, the algorithm provides an
accurate localization model and an optimization framework,
enabling truly grid-free localization. Unlike FALCON, which
relies on the accuracy of fixed grid guesses to make accurate
Taylor series approximations, the proposed localization steps
using the matrix pencil method are accurate without the need
for precise initialization. Specifically, when a complete set of
Fourier coefficients is returned by means of deconvolution,
the remaining task corresponds to the harmonic retrieval
problem [33,34,42,43]. For example, 1-D harmonic retrieval
can be handled by a subspace-based method such as ESPRIT
(estimation of signal parameters via rotational invariant tech-
niques) [42] by exploiting the inherent Vandermonde structure
of a Hankel matrix constructed using x̂. This Vandermonde
structure, in general, can be extended to higher dimensions as
well. For the 2D problem, the MEMP (matrix enhancement
and matrix pencil) algorithm [34] can be used. The MEMP al-
gorithm solves rank deficiency problem by constructing a lifted
matrix, i.e. Hankel matrix [34]. Specifically, it divides the
problem into different sequential 1D harmonic problems with
matrix pencils, after which it pairs two sets of harmonics in
each dimension. Given that this pairing requires an additional

est +

freq-band for 

PSF estimation 

2. PSF estimation 3.. Deconvolution of

    Fourier Spectrum
4..Grid-free localization

FT

Fig. 1. Schematic representation of the proposed method.

minimization step, the use of what are known as algebraically
coupled matrix pencils (ACMP) [33] has been proposed to
solve the pairing issue. Thus, the ACMP algorithm is used in
this paper. As a result, our method can significantly improve
the localization accuracy, especially in experimental conditions
with low SNRs. Confirmation of this benefit is augmented later
in the paper, specifically in the experimental section.

IV. ALGORITHM IMPLEMENTATION

Based on the theoretical derivation in the previous sec-
tion, we now provide a more detailed implementation of the
algorithm for our 2D super-resolution microscopy problem.
As shown in Fig. 1, a raw frame is initially divided into
several overlapping patches of 45 × 45 pixels, where the
outermost five pixels of each patch overlap the neighboring
patches (the localization results from the overlapped region
are excluded from the final results). The following three steps
are then applied to each patch: 1) PSF estimation using a
low-frequency signal, 2) spectral domain deconvolution to
retrieve Fourier data x̂ under a Poisson noise model, and 3)
fluorophore location estimation using the harmonic retrieval
approach. Additional details pertaining to each step are given
below.

A. Parametric PSF Estimation

As noted earlier, we use the simple 2D-symmetric Gaussian

model hσ(r) = e−
‖r‖2

2σ2 with the parameter σ to describe the
shape of the 2D PSF. The validity of using Gaussian PSF
approximation under our experimental set-up is discussed in
Appendix. Because the measurement y is contaminated by
noise, we need two small modifications to increase the degree
of noise robustness. First, to apply the inverse filter as in (26),
we only use the low-frequency part of ŷ[k] to improve the
signal-to-noise ratio of our filtering procedure. Specifically, we
took 17×17 coefficients for all our numerical and experimental
calculations. Second, due to the noise contaminations, H {x̂σ}
becomes a full rank matrix regardless of the parameter σ.
Hence, instead of using (27), we rely on a Schatten-p quasi-
norm as a rank surrogate:

σo = arg min
σ

‖H {x̂σ}‖pp , 0 < p < 1, (28)

after normalizing the MTF function ‖ĥσ‖2 = 1. We recall that
the Schatten-p matrix norm of a matrix A is defined as the
lp-norm for singular values:

‖A‖pp =
∑
n

λpn,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2018.2843718

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

where λn denotes the n-th singular value of A. Here, the
Schatten p-norm is used as an alternative measure of rank in
order to find the σ value which gives the norm with the lowest
value. When p < 1, the Schatten p-norm is concave and can
therefore be used as a better rank surrogate function than the
nuclear norm. Because (28) accomplishes single-variable non-
linear optimization, it is solved efficiently by using the built-in
MATLAB function fminbnd.

B. Deconvolution Step

1) Construction of 2D Hankel Matrices: In the previous
section, the deconvolution formula for the 1D signal was de-
rived for simplicity. Nevertheless, the formula for the 2D signal
case can easily be extended with a few minor modifications.
Let us assume that the variables of z, p̂, x̂ in our algorithm
are lexicographically ordered vectors. For example, x̂ is a
lexicographically ordered vector from the 2D spectrum X̂:

X̂ = [x̂1, · · · , x̂n], x̂ = vec(X̂).

In this case, the remaining task is to redefine H (x̂) as
a 2D Hankel matrix of X̂ . As described in several works
[15,17,18], the 2D low-rank Hankel matrix originates from
2D annihilating filters; accordingly, for a given annihilating
filter of size dm × dn, the associated 2D Hankel matrix is
given by

H (x̂) =
H (x̂1) H (x̂2) · · · H (x̂dn)
H (x̂2) H (x̂3) · · · H (x̂dn+1)

...
...

. . .
...

H (x̂n−dn+1) H (x̂n−dn+2) · · · H (x̂n)

 , (29)

where H (x̂i) ∈ H(m, dm) is defined in (1). Then, we can
use the same formulation (22)-(25) by replacing the Hankel
matrix with the 2D one in (29).

In practice, the background autofluorescence signals bm
should be estimated before the deconvolution step. Here, we
use the iterative wavelet threshold method proposed in FAL-
CON [9]. Specifically, assuming that the background signal is
spatially smooth, the method finds, at each iteration, a low-
resolution image of background autofluorescence by means of
a multi-level wavelet transform operation and then subtracts
the intensities of the raw image through the low-resolution
image. Details pertaining to this step are available in the
literature [9].

The values of the parameters λ, α, µ in this step are fixed
as follows: λ = 20, α = 1e−2, and µ = 1e−4. For a better
upper bound of the rank of the Hankel matrix, we undertake
the factorization of U (n), V (n) from the estimated H (x̂(n))
and its singular value distribution at every 30 iterations.

2) Extension to Multi-Frame Formulation: In localization
microscopy, fluorescence molecules can be activated in several
consecutive frames due to the stochastic photo-physics. In
other words, activated fluorescent probes have the common
supports in these successive frames [44]. This joint sparsity
can be also incorporated in our deconvolution framework to
improve the quality of the reconstruction. In particular, we

can impose joint sparsity by minimizing the rank of the 2D
Hankel matrices concatenated side by side [15,17,18]. Due
to the existence of inter-channel annihilating filters originated
from the joint sparsity condition, the rank of the concatenated
matrix is small such that we can exploit the low-rankness
characteristic. Additional details are given in the literature
[15].

This multi-frame version of the problem is nearly identical
to that discussed earlier, except for the low-rank regularization
term. Specifically, (20) is reformulated as:

L(U, V, {x̂(i)}Ti=1,Λ)

:=
T∑
t=0

1

2
‖ŷ(t) − p̂� â� x̂(t)‖2 +

λ

2

(
‖U‖2F + ‖V ‖2F

)
+
µ

2
‖H ({x̂(i)}Ti=1)− UV H + Λ‖2F (30)

where T is the number of adjacent frames to be processed
simultaneously, (·)(t) denotes a variable at frame t, and the
concatenated 2D Hankel matrices is given by

H ({x̂(i)}Ti=1) = [H (x̂(1)), · · · ,H (x̂(T ))].

Here, the update of x̂ is modified as:

x̂
(n+1)
(t) = PH(f̂

(n+1)
(t) ),

f̂
(n+1)
(t) [i] =

(â[i]∗p̂[i]∗ŷ(t)[i]) + µPt,i
(
H ∗ (U (n)V (n)H − Λ(n)

))
|â[i]p̂[i]|2 + µPt,i(H ∗H (ei))

.

In this equation, Pt,i is the projection operator for the i-th
coordinate at frame t.

When we apply the multi-frame deconvolution to raw
frames, patches of consecutive T frames are selected in a
sliding-window manner. The regularization parameter λ is set
to λ = 20/T .

C. Grid-free Source Localization using the Matrix Pencil
Method

Once the entire Fourier spectrum X̂ is restored, the remain-
ing task is to extract the harmonics from the Fourier spectrum
from which the spatial locations can be computed. Specifically,
let (xk, yk), k = 1, · · · ,K denote the locations of the K-
harmonics. The discretized Fourier data is the given by

X̂[m,n] =
K∑
k=1

skp
m
k q

n
k ,

where pk = e−jωxk , qk = e−jωyk . Then, the matrix of Fourier
coefficients X̂ ∈ Cm×n can be decomposed as follows:

X̂ = PSQT ,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2018.2843718

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8

where SK×K = diag{s1, · · · , sK} is a diagonal matrix. P ∈
Cm×K , Q ∈ Cn×K are Vandermonde structured matrices:

P =


1 1 · · · 1
p1 p2 · · · pK
...

...
. . .

...
pm−11 pm−12 · · · pm−1K

 ,

Q =


1 1 · · · 1
q1 q2 · · · qK
...

...
. . .

...
qn−11 qn−12 · · · qn−1K

 .
If there are common harmonics in each dimension, we cannot
obtain the individual harmonics directly from X̂ because
the rank of X̂ is less than K. The ACMP [33] algorithm
also applies the matrix pencil technique to Hankel-structured
matrices to avoid the rank deficiency problem. The MEMP
algorithm uses a doubly block Hankel matrix as the lifted
matrix, but doing so requires an additional pairing step. The
ACMP algorithm solves this pairing issue by constructing a
simple block Hankel matrix Z ∈ Cdn(m−dm)×dm(n−dn) from
X̂ , as

Z =


X̂(1,1) X̂(2,1) · · · X̂(dm,1)

X̂(1,2) X̂(2,2) · · · X̂(dm,2)

...
...

. . .
...

X̂(1,dn) X̂(2,dn) · · · X̂(dm,dn)


where the block component Zij = X̂(i,j) is a sub-matrix of
X̂ given by

X̂(i,j) =
X̂[i, j] · · · X̂[i, j + n− dn − 1]

X̂[i+ 1, j] · · · X̂[i+ 1, j + n− dn − 1]
...

. . .
...

X̂[i+m− dm − 1, j] · · · X̂[i+m− dm − 1, j + n− dn − 1]

 .
The block Hankel matrix Z is decomposed as

Z = P̃CQ̃T ,

where P̃ ∈ Cdn(m−dm)×K and Q̃ ∈ Cdm(n−dn)×K also have
the Vandermonde structure:

P̃ = [PTm−dm , WQP
T
m−dm , · · · , W

dn−1
Q PTm−dm ]T ,

Q̃ = [QTn−dn , WPQ
T
n−dn , · · · , W

dm−1
P QTn−dn ]T .

The diagonal matrices WP = diag{p1, p2, · · · , pK} and
WQ = diag{q1, q2, · · · , qK} contain all harmonic components
in each dimension, respectively. Pm−dm ∈ C(m−dm)×K and
Qn−dn ∈ C(n−dn)×K are given by

Pm−dm =


1 1 · · · 1
p1 p2 · · · pK
...

...
. . .

...
pm−dm−11 pm−dm−12 · · · pm−dm−1K

 ,

Qn−dn =


1 1 · · · 1
q1 q2 · · · qK
...

...
. . .

...
qn−dn−11 qn−dn−12 · · · qn−dn−1K

 .

In order to utilize this Vandermonde structure, the three sub-
matrices Ztl, Ztr and Zbl ∈ Cdn(m−dm−1)×dm(n−dn−1) of Z
are constructed by omitting the outermost column and row of
every block of Z. For example, the (i, j)-th block of Ztl is
equal to the top-left sub-matrix of Zts:

Ztlij = Zij |,

where (·)| and (·) are operations which function to delete the
last column of (·) and the last row of (·), respectively. In
a similar manner, the top-right Ztr and bottom-left Zbl are
defined. Due to the Vandermonde structure, the following two
matrix pencils; Ztr − αZtl, Zbl − βZtl, have the following
properties:

Ztr − αZtl = P̃S (WQ − αI) Q̃
T
,

Zbl − βZtl = P̃S (WP − βI) Q̃
T
.

where α, β are scalar values. The ACMP algorithm estimates
the diagonal matrices WP and WQ from these matrix pencils,
after which the locations {xk}Kk=1 and {yk}Kk=1 are found from
WP and WQ, respectively.

In our implementation, in order to reduce false-positive
localizations, the rank of Z is determined by its singular value
distribution; in particular, small singular values less than 5%
of the maximum are discarded.

V. RESULTS

We analyzed the performance of the proposed algorithm
using both numerical and actual experimental results. For a
fair comparison, the proposed method was evaluated with two
recently developed localization algorithms for the HD imag-
ing: FALCON [9] and DeconSTORM [7]. For a quantitative
evaluation, we used several metrics which are regularly used
in the earlier studies [9,10,45,46]. Note that localization-based
analysis measures such as the recall rate are not sufficient to
evaluate localized results in HD imaging, as localized particles
have matching ambiguities. In particular, we observed that
the scores for the recall rate and localization errors were
not simply converted to the quality of reconstructed super-
resolution image. Thus, as in earlier studies [9,10,45,46] we
also used image-based analysis such as peak-signal-to-noise
ratio (PSNR).

A. Numerical experiments

First, the numerical performances of the parametric PSF
estimation were verified, as shown in Fig. 2. Here, we pro-
duced HD images of 45×45 pixels, where 35 randomly placed
molecules were convolved with a given PSF with the back-
ground signals of 20 photons added. To meet the requirements
of Poisson noise model, the brightness of the fluorescent
molecules was properly adjusted according to the signal-to-
noise ratio (SNR). For each simulation setting, 30 simulated
images were used. From the simulated images with a given
PSF, we measured values of the Schatten p-norm ‖H {x̂σ}‖pp
with p = 0.6 and various values of σ. As expected, the true
value of σ led to the minimum values of the Schatten norm
when no noise was present in the measurement. In addition, the
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Fig. 2. Performance analysis of the parametric PSF estimation. (a) The values
of Schatten norm ‖H {x̂σ}‖pp with p = 0.6 are plotted on different PSF
widths in terms of FWHM ( ' 2.35σ). The dotted vertical black line denotes
the true FWHM. (b) Averaged estimation errors are plotted along different
PSF widths (300−400 nm) under three SNR conditions (5dB, 15dB, 30dB).
The error bars indicate standard deviations of the errors. For each simulation
setting, the analysis was repeated 30 times.

algorithm was still robust to noise, as shown in Fig. 2 (a). The
accuracy of the method was also quantitatively investigated
under different noise levels and PSF widths, as shown in Fig.
2 (b). Estimation errors were calculated for three different SNR
conditions (5dB, 15dB, and 30dB) within a typical range of
PSF widths (300− 400 nm) used in localization microscopy.
The results showed that most estimation errors were below
20 nm in terms of the full width at half maximum (FWHM),
which is an acceptable level in localization microscopy.

We then evaluated the localization performance of the
proposed algorithm over a wide range of imaging densi-
ties. For this analysis, HD images of 80 × 80 pixels were
generated where K molecules were randomly placed in a
central 70× 70 area. Here, a fixed PSF was used. In order to
consider realistic live-cell imaging conditions, the simulation
images were generated at two different photon-emission rates
(or brightness) of activated molecules: 500/200 and 300/150
in terms of the mean/standard deviation of log-normal dis-
tributions. Additionally, 50 background fluorescent photons
were added at every pixel. By assuming a state-of-the-art
camera such as an EMCCD (Electron multiplying charge-
coupled device) or a sCMOS (scientific complementary metal
oxide semiconductor) camera, we initially generated camera
shot noises following Poisson distributions, after which small
Gaussian noises with variance of 1 were added as camera
readout noise.

We measured localization errors with respect to the root
mean square (rms), and recall rates (= Kmatch

K ), where Kmatch

is the number of the matched positions and K is the total num-
ber of locations. In the analysis, the localized particles with the
error exceeding 300 nm - the FWHM of the simulated PSF
- were excluded from the analysis. The proposed algorithm
was evaluated in comparison to FALCON. DeconSTORM
was not included in this analysis because it only provides
deconvolution images rather than the localized positions.

The results of the numerical experiments in Fig. 3 show that
the proposed algorithm offers significant improvements in the
recall rates with comparable accuracy levels. Specifically, the
improvement of the recall rates in the case with the lower
SNR case shown in Fig. 3 (c-d) is more distinct. While
FALCON showed noticeable decreases in the recall rates with

lower SNRs, the proposed method retained its good detection
capability. The proposed method resulted in lower accuracy in
a low-density range because it detected many molecules with
low brightness levels.

The final spatial resolution is determined not only by
localization errors but also by recall rates. For a better un-
derstanding of this effect, we analyzed the performances of
the proposed method on two specific geometric structures, as
shown in Figs. 4 and 5. First, we produced a radial phantom
consisting of equi-angular spaced lines with an angular period
of 20◦. For each simulated image frame, 15 molecules were
newly activated on these lines. Moreover, to impose temporal
redundancy of the molecules, the probability of deactivation
in the next frame was set to 0.5. In other words, the av-
erage activation length of the molecules was two frames.
The photon emission rates was set to 500/200 in terms of
the mean/standard deviation, and 50 background photon were
added. Three localization methods were used to reconstruct
the 6000 frames simulated here. Moreover, we measured line
profiles for a more quantitative evaluation. The line profiles are
averaged for each angular period. As shown in Fig. 4 (g-h),
the proposed multi-frame deconvolution algorithm provided a
better resolution of a smaller gap between two adjacent lines as
compared to the other algorithms. The results also confirmed
that using joint sparsity increases the reconstruction quality,
which results in the highest PSNR value.

We also conducted experiments with a honeycomb-
structured sample, as shown in Fig. 5 (a). In order to simulate
the effect of a sample moving along the axial direction, we
controlled the widths of the PSF according to a sinusoidal
profile as shown in Fig. 5 (f). For this analysis, 1000 HD
frames were generated and 50 activated molecules were ran-
domly distributed on the sample in each frame. The photon-
emission rates were adjusted in the same manner used in
the previous numerical study of the radial phantom, but the
temporal redundancy was not considered here. DeconSTORM
and FALCON used a fixed PSF corresponding to the average
width, while the proposed method used the PSFs estimated in a
frame-by-frame manner. These results show that the proposed
method accurately estimates variations of the PSF while also
retaining the fine details of the structure. On the other hand,
FALCON had many false positive localizations and the SR
image of DeconSTORM was blurred. The evaluation of the
PSNR also confirmed the superiority of our approach.

B. Live-cell experiments

The same algorithms were also applied to experimental live-
cell imaging data. Specifically, U2OS cells were prepared, and
the nuclei of the cells were labelled with Picogreen (1:500
dilution from the original stock of Quant-iT PicoGreen; Invit-
rogen). dSTORM imaging [47] was performed on an inverted
microscope (Axio Observer.D1; Zeiss) equipped with a Total
internal reflection fluorescence (TIRF) module. To extend the
imaging depth, the system was slightly modified using the
HILO illumination [13,48]. This results in PSF variations
within the depth of focus that needed to be corrected, and the
validity of correcting PSF variation using the Gaussian PSF
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Fig. 3. Localization performances of the proposed method compared to FALCON along a wide range of imaging densities (1 − 7 µm−2). The simulated
images were generated with a random distribution of molecules. The results were evaluated by means of recall rates (a,c) and localization errors in terms of
root mean square (rms) (b,d). (a,b) correspond to the results in the higher photon-emission case (500,200), and (c,d) correspond to the lower photon-emission
(300,150) in terms of (mean, std).

Fig. 4. Performance analysis for a phantom with equi-angularly spaced lines. The minimum angle of two lines is 20 degree. 6000 high density images were
generated where an average of 30 molecules are activated in each frame. A mean activation length of the molecules was set to 2 frames. (a) An SR image
generated from true particle distributions. (b) A conventional diffraction-limited image with a single simulated image. (c) An SR image reconstructed by
DeconSTORM. (d) An SR image reconstructed by FALCON. (e-f) SR images reconstructed by the proposed method using single frame deconvolution and
multi-frame deconvolution, respectively. (g) Line profiles as measured from the solid lines in (a, c-f). (h) Line profiles as measured from the dashed lines in
(a, c-f). (g-h) The measured line profiles are averaged at every angular period (=20 degree), and colors of the profiles correspond to the colors of the circles
in (a,c-f), respectively. Scale bars in (a-f) are 500 nm.

Fig. 5. Performance analysis for a honeycomb structured phantom. 1000 high density images were generated with 50 particles randomly distributed on the
phantom for every frame. The PSF width varies along the frames with a sinusoidal profile. (a) An SR image of the phantom. (b) A conventional diffraction-
limited image with a single simulated image. (c) DeconSTORM image. (d-e) SR images reconstructed by FALCON and the proposed method, respectively.
(f) Results of our PSF estimation, where the black line denotes true PSF widths and the red circles corresponds to the estimated values at each frame. Scale
bars are 500 nm in (a-e).
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Fig. 6. Experimental results of live-cell imaging data. U2OS cells was
prepared, and the nuclei of the cells were labelled with Picogreen. (a) A
conventional diffraction-limited wide-field microscopy image constructed by
accumulating 2000 raw frames. (b) A DeconSTORM image. (c-d) SR images
reconstructed by FALCON and the proposed method, respectively. Scale bars
are 2 µm in (a-d).

model is discussed in Appendix. A 488 nm laser (Sapphire 488
50, Coherent, Santa Clara, CA) used to excite the Picogreen
was focused on the back focal plane of the oil-immersion
objective (alpha Plan-Apochromat, 100x, NA=1.46; Zeiss).
The fluorescent light collected by this objective then was pro-
jected onto an EMCCD camera (iXon+; Andor, Belfast, UK).
Additional lenses resulted in a final image pixel size of 100
nm. In this setup, 2000 raw images were acquired at a camera
acquisition of 33.3 Hz rate with a laser excitation intensity of
15 kW cm−2, resulting in high molecular activation.

The live-cell data was processed by the proposed algorithm
for comparison with the other two HD localization algorithms.
For the proposed method, locally estimated PSFs were used,
and every two consecutive frames were processed together in
the deconvolution step. Because the other two methods used
the fixed PSF model, the average FWHM of the PSFs was
applied to these methods. Moreover, we ran DeconSTORM
while also assuming that the average activation length of the
molecules is two frames.

The reconstructed SR images are shown in Fig. 6. We found
that the proposed method detected 30% more probes than
FALCON and also provided better SR imaging than the other
methods. Particularly, it retained the connected structure, as
highlighted by the blue and white dotted circles in Fig. 6 (a-d),
while other methods missed this part. Moreover, the proposed

raw frame

PSF map

Fig. 7. Results of adaptive PSF estimation with live-cell imaging data. (top)
High-density raw camera images acquired during 60 seconds, and (bottom)
the widths of locally estimated PSFs in terms of FWHM. PSFs were estimated
at each local patch. Scale bars are 2 µm in (a-d).

method and FALCON were quantitatively compared by using
a method based on Fourier ring correlation (FRC) [46], which
was developed specifically for resolution assessment in local-
ization microscopy. Because the image-based DeconSTORM
approach is not compatible with this evaluation method given
the requirement of localized positions, it was excluded. In the
FRC analysis, it was shown that the proposed method leads
to improved spatial resolutions by 20% compared to those by
FALCON.

In order to demonstrate space-time varying PSFs in live-
cell image data, our adaptive PSF estimation was applied.
Specifically, the width of PSF was locally estimated from each
local patch of 45 × 45 pixels. In Fig. 7, the estimated widths
of the PSFs were visualized in terms of the FWHM. The
results showed slight spatio-temporal variation of the PSFs.
Considering the prolonged acquisition time approximately 60
seconds, the relatively large nuclei stained by PicoGreen and
the longer depth of field of our modified TIRF setup, it was
deemed reasonable to expect z-directional fluctuations of the
fluorophore locations around the nuclei area due to the cell mo-
bility. We also observed that the widths of the PSFs decreased
after 60 sec. This may have originated either from algorithmic
bias due to the lower data SNR from photobleaching or
changes in the imaging environments from the movement of
the cell nuclei or from a stage drift. However, considering the
resolution improvement in Fig. 6 by the proposed method,
we conjecture that the PSF estimation was useful in this
experiment.

To evaluate grid-free localization specifically, the proposed
method was compared with another grid-free method FAL-
CON using Taylor approximation of the PSF. For this analysis,
every localization location was converted into the relative
displacement toward the center of the nearest pixel, which is
displayed as a histogram, as shown in Fig. 8. This shows that
the histograms of the proposed method have more uniform
distributions than those of FALCON. In particular, the non-
uniformity observed in the FALCON reconstruction is distinct
at every one third of the pixel position, which is the size
of sub-pixel grid of FALCON. This occurs because Taylor
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Fig. 8. Histograms of relative localization offsets. Each localization location
was converted relative to the center of nearest pixel in (a) x-direction, and (b)
y-direction, respectively.

approximation errors in FALCON induce local bias, resulting
in the non-uniformity of the histograms. In addition, the Taylor
approximation errors increase when an inaccurate PSF model
is used. Finally, the counts in the histogram of Fig. 8 clearly
show that more probes are detected by the proposed method
compared to FALCON.

VI. DISCUSSION

Note that there are several hyper-parameters in the proposed
algorithm, which includes λ, α, µ as well as a re-initialization
parameter. However, in our experiments, we found that the
algorithm was not overly sensitive to α, µ or a re-initialization.
Specifically, we found that the proposed method works prop-
erly in our experiments for α ∈ [10−3, 10−1] and µ ∈
[10−5, 10−4]. Thus, we choose the default values of α and
µ (10−2 and 10−4, respectively). However, we found that the
regularization parameter λ was important. Because the regular-
ization parameter λ in the deconvolution step determines the
sparsity level, the sensitivity of this parameter was analyzed
in various imaging conditions by varying the brightness of
the photons and the fluorophore density. Specifically, with
the simulated data sets in Fig. 3, we measured localization
accuracy with several values of λ in terms of the recall rates,
localization accuracy, and false-positive ratio, as shown in Fig.
9. The results showed that λ = 20 was a good choice to
balance the detection ability and localization accuracy of the
data set. Moreover, it was relatively insensitive to the SNR of
the data because it showed the similar trends in both low- and
high- SNR conditions. Moreover, it can be adjusted according
to user preference between recall and precision.

Poisson modeling should be used with special attention
paid to preprocessing and converting the analog-digital units
(ADUs) into physical photon units. While this can often be
omitted in routine experiments, without careful scale calibra-
tion the data may not follow the Poisson-like noise statistics,
resulting in poor reconstruction. Therefore, in this paper, the
gain of the camera was carefully calibrated to reconstruct
and analyze HD data. Note that this gain calibration is also
important for other HD algorithms using Gaussian noise
model.

Because the proposed method has been specifically devel-
oped for the 2D imaging problem, it is basically limited to
shallow imaging whose PSF can be still modeled by Gaussian.

Accordingly, it is recommended to work with modified TIRF-
based systems [13,48]. However, our method can be extended
to 3D SR imaging techniques such as the astigmatic [49],
biplane imaging [50] or hybrid [10] type. In such case, the
deconvolution should be performed in the 3D Fourier space
and more realistic PSF model, and 3D harmonic retrieval
[51,52] should be considered.

In terms of computational complexity, our grid-free localiza-
tion algorithm is formulated in a smaller dimension compared
to existing HD localization methods using a fine sub-pixel
grid with a downsampling factor of 3x or 5x. Specifically, the
proposed method uses the same grid of raw camera data such
that the dimension of the problem can be reduced down to
the square of the down-sampling factor. Unfortunately, we do
not claim that the current implementation is computationally
advantageous compared to some existing softwares. For ex-
ample, our algorithm has a processing time similar to that of
DeconSTORM, but it is not as fast as FALCON. Specifically,
our independent Matlab implementations of three methods
on a graphic processing unit (GPU) (Nvidia GTX Titan,
Maxwell architecture), the proposed method, DeconSTORM
and FALCON took 45 msec, 48 msec and 4 msec, respectively,
to reconstruct a µm2 area. The processing times of all three
methods are mostly determined by the sizes of processed
regions, not the density level of the activated molecules.
Two-frame processing of the proposed method has a slightly
longer run time of 52msec/µm2. Although there is also room
for improvement by optimizing the implementation, the main
computational bottleneck of the proposed algorithm is the rank
minimization step for relatively large-scale Hankel matrices.
However, we expect that this problem will be mitigated by
integration with the latest development in rank minimization
from the optimization community. For example, we can di-
rectly use an annihilating filter [53] rather than using the high-
dimensional Hankel matrix.

VII. CONCLUSION

In the present work, we proposed a new grid-free super-
resolution microscopy algorithm using annihilating filter-based
low-rank Hankel structure matrix approach. The algorithm was
developed based on the observation that sparsity in the image
space is directly linked to a low-rank property in the Fourier
domain. Accordingly, we converted our multiple source local-
ization problem into a harmonic retrieval problem by initially
undertaking the deconvolution in the Fourier domain and then
extracting the frequency harmonics, from which the spatial
locations are directly calculated.

Moreover, we proposed a parametric PSF estimation method
for 2D deconvolution using the low-rank property of the
weighted Hankel matrix, with the method validated by nu-
merical studies. Furthermore, our deconvolution algorithm not
only utilizes a realistic Poisson noise model but also the
temporal redundancy of the signal by imposing a low-rank
on the concatenated Hankel matrices of several frames. In
addition, the matrix pencil-based harmonic retrieval algorithm
allows for truly continuous localization. The entire process
was done in a patch-by-patch manner, resulting in spatially
adaptive localizations.
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Fig. 9. Parameter (λ) sensitivity analysis on high and low SNR simulated data. (a) Molecular recall rates, (b) localization accuracy, and (c) false positive
localization ratio with λ of 10, 15, 20, 25, 30 for the high SNR simulated data. (d) Recall rates, (e) localization accuracy, and (f) false positive localization
ratio with respect to λ of 10, 15, 20, 25, 30 for the low SNR simulated data.

The proposed method was validated using simulated and
experimental high-density dSTORM data for live-cell imaging.
Specifically, the ability to detect molecules in a low-SNR
environment was significantly enhanced compared to previous
HD algorithms. In addition, the localization accuracy was
significantly improved quantitatively in both numerical and ex-
perimental studies by applying our true grid-free localization,
data-adaptive PSF estimation and multi-frame deconvolution.
Therefore, we believe that the proposed method will be a
very powerful tool for those conducting quantitative biological
research in the area of live-cell imaging.

APPENDIX

Generally, PSFs in biological samples vary spatially [54–56]
and temporally [57,58] due to induced aberrations and light
scattering within the samples. The aberrations are induced not
only by the refractive index mismatch between a sample and
the imaging medium, but also by intrinsic variations of the
sample. Accordingly, PSF model such as Gibson and Lanni
(GL) model [59] has been often used, since it considers the
aberrations. Specifically, GL PSF model takes into account
refractive index mismatches between the immersion, cover-
slip and sample layers, so we believe it is a realistic model.
Thus, we validated the effectiveness of our Gaussian PSF
model compared to GL model PSF (GL PSF). Specifically,
we have generated GL PSFs over a large axial range from
−1µm to 1µm using the ImageJ plugin [60]. In Fig. 10(a),
GL PSFs and Gaussian PSFs are visualized with the width of
each Gaussian PSF chosen to minimize the least squares error
toward the corresponding GL PSF. With the camera noise,
we could not find the difference between the two models
in their forms. Moreover, Fig. 10(b) shows that the width
of Gaussian PSF in the focus range (−400nm ∼ 400nm)
varies slightly and increases rapidly in the out-of-the focus
area. In Fig. 10(c), we also plot the fitting error between the
normalized Gaussian PSF and the GL PSF, which has peaks
around ±500nm. To analyze how much this model mismatch

affects localization performance, we conducted simulation
studies under shot noise and GL PSF model at two noise
levels. Specifically, for a high SNR simulation we assume
source intensity and background signal are (2000,100), while
they are set to (500,20) in the case of a low SNR. Then,
localization was performed using GL PSF and Gaussian PSF.
In the relative error plot in Fig. 10(d), we can see that the fit
error using Gaussian PSF was slightly larger than the fitting
error by the true one (GL PSF). However, the relative error is
only up to 5% in the case of high SNR, while it is less than
1% in the case of low SNR. This suggests that the effect of the
model mismatch between Gaussian and GL PSFs has limited
effects on localization accuracy. Considering other physical
properties such as scattering, the mismatch can be negligible.
Therefore, we believe that the Gaussian PSF model with
varying width is sufficiently accurate for our purpose. In our
setup that uses HILO illumination, the illumination thickness
is about 3µm [61], and the depth of focus of our objective
lens is approximately 700nm. In spite of this, we claim that
our experimental setup is adequate for 2D single molecule
imaging within the depth of focus. In order to prove that the
tilted HILO illumination in our setup poses no problems, we
performed an additional numerical study to examine the peak
intensity value of PSFs located around the focal plane. To
that end, we considered noiseless GL-PSFs weighted by the
source intensity to which we added the background signal.
Then, we plot the peak intensity value of the PSFs as solid
lines with the corresponding background signal as dashed lines
in the case of low and high SNR images. The results were
recorded as red at high SNR case and blue at low SNR case. In
Fig. 10(e), we can see that the peak intensity becomes quickly
smaller than the background, especially at low SNR. This
suggests that the signatures of PSFs from out of focus area are
negligible and undistinguishable from the background signal.
Therefore, we believe that despite the HILO illumination,
our localization mechanism only picks up the point sources
situated within the depth of focus: that is, those for which the
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Gaussian PSF model is adequate. Therefore, we believe that
our Gaussian PSF model is good for 2D localization under
HILO illumination.
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