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Abstract— Parallel MRI (pMRI) and compressed sensing MRI
(CS-MRI) have been considered as two distinct reconstruction
problems. Inspired by recent k-space interpolation methods,
an annihilating filter based low-rank Hankel matrix approach
(ALOHA) is proposed as a general framework for sparsity-driven
k-space interpolation method which unifies pMRI and CS-MRI.
Specifically, our framework is based on a novel observation that
the transform domain sparsity in the primary space implies the
low-rankness of weighted Hankel matrix in the reciprocal space.
This converts pMRI and CS-MRI to a k-space interpolation prob-
lem using a structured matrix completion. Experimental results
using in vivo data for single/multi-coil imaging as well as dynamic
imaging confirmed that the proposed method outperforms the
state-of-the-art pMRI and CS-MRI.

Index Terms—Parallel MRI, Compressed Sensing, Annihilating
filter, Structured low rank block Hankel matrix completion,
wavelets, cardinal spline, Pyramidal representation

I. INTRODUCTION

Magnetic resonance imaging (MRI) is an imaging system
that sequentially acquires k-space data corresponding to the
Fourier transform of an object. This enables us to apply various
advanced signal processing techniques. Recently, compressed
sensing theory [1], [2] has been extensively employed in
accelerated MRI [3]-[5]. Compressed sensing algorithms can
restore original signals from much less k-space data by ex-
ploiting the sparsity of an unknown image in the total variation
(TV) or wavelet transform domains, and incoherent sampling
schemes such as Gaussian random or Poisson disc are usually
required. Accurate MRI reconstruction from less data makes
compressed sensing a hot topic in the research community;
thus, it has been applied across many different application
areas such as in pediatric imaging [6], dynamic cardiac MRI
[7]-[9], perfusion imaging [10], angiography [11], and so on.

On the other hand, parallel MRI (pMRI) [12]-[14] exploits
the diversity in the receiver coil sensitivity maps that are
multiplied by an unknown image. This provides additional
spatial information for the unknown image, resulting in accel-
erated MR data acquisition through k-space sample reduction.
Representative parallel imaging algorithms such as SENSE
(sensitivity encoding) [12] or GRAPPA (generalized autocal-
ibrating partially parallel acquisitions) [13] require regularly
sampled k-space data for computationally efficient reconstruc-
tion. Moreover, additional k-space data, the so-called auto

The authors are with Dept. of Bio and Brain Engineering, KAIST, Daejeon
305-701, Republic of Korea. Email:jong.ye @kaist.ac.kr.

This work was supported by Korea Science and Engineering Foundation
under Grant NRF-2014R1A2A1A11052491.

calibration (ACS) lines, are often required to estimate the coil
sensitive maps or GRAPPA kernels [13].

Because the aim of the two approaches is an accelerated
acquisition by reducing the k-space data, extensive research
efforts have been made to synergistically combine the two
for further acceleration. One of the most simplest approaches
can be a SENSE type approach that explicitly utilizes the
estimated coil maps to obtain an augmented compressed
sensing problem:

g1 A[S1]

subject to f (1)

min [ W] g =

g} A[Sr]

where f and g; denote the unknown image and the k-
space measurements from the i-th coil, respectively; A is a
subsampled Fourier matrix; W is a sparsifying transform, and
[S;] denotes a diagonal matrix whose diagonal elements come
from the ¢-th coil sensitivity map. The multichannel version
of k-t FOCUSS [7] is one of the typical examples of such
approaches. On the other hand, I;-SPIRIT (l;- iTerative Self-
consistent Parallel Imaging Reconstruction) [15] utilizes the
GRAPPA type constraint as an additional constraint for a
compressed sensing problem:

Hl};n H\IJF”LQ (2)

subject to G=AF 3)

VEC(F) = M - VEC(F) 4)

where || - ||1,2 denotes the (1,2)-mixed norm of a matrix,

F=1[f f £], G = [g1 & gr] denote
the unknown images and their k-space measurements for the
given set of coils, and ¥ denote a discrete wavelet transform
matrix, and M is an image domain GRAPPA operator, and
VEC(+) is the vectorization operator. In both approaches, an
accurate estimation of coil sensitivity maps or GRAPPA kernel
is essential to fully exploit the coil sensitivity diversity.

In order to overcome these difficulties, calibration-less
parallel imaging methods have been extensively investigated,
among which SAKE (simultaneous autocalibrating and k-
space estimation) [16] represents one of the first steps. In
SAKE, the missing k-space elements are reconstructed by
imposing the data consistency and the structural maintenance
constraints of the block Hankel structure matrix. However, the
origin of the low rankness in the Hankel structured matrix
for the case of a single coil measurement was not addressed,
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so it was not clear whether SAKE could outperform the
compressed sensing approach when it is applied to single coil
data. Haldar [17], [18] later discovered that a Hankel structured
matrix constructed by a single coil k-space measurement is
low-ranked when an unknown image has finite support or a
slow-varying phase. Based on this observation, he developed
the so called LORAKS (Low-rank modeling of local k-
space neighborhoods) algorithm [17] and its parallel imaging
version, P-LORAKS (Low-rank modelling of local k-space
neighborhoods with parallel imaging data) [18]. However, it
was not clear how the existing theory can deal with large
classes of image models that are not finite supported but can be
sparsified using various transforms such as wavelet transforms
or total variations (TV), etc.

Therefore, one of the main goals of this paper is to develop
a theory that unifies and generalizes k-space low-rank methods
to also allow for transform sparsity models which are critical
for practical MRI applications. Toward this goal, we show
that the transform domain sparsity in the signal space can be
directly related to the existence of annihilating filters [19]-
[21] in the weighted k-space. Interestingly, the commutative
relation between an annihilating filter and weighted k-space
measurements provides a rank-deficient Hankel structured
matrix, whose rank is determined by the sparsity level of
the underlying signal in the transform domain. Therefore,
by performing a low-rank matrix completion approach, the
missing weighted k-space data in the Hankel structured matrix
can be recovered, after which the original k-space data can be
recovered by removing the weights.

Interestingly, our new framework is so general that it can
generalize the existing compressed sensing MR approaches
in very unique ways. For example, even though the original
authors did not explicitly mention, C-based LORAKS in [17]
indeed utilizes a special case of annihilating filter that exploits
the image domain sparsity in term of finite support condi-
tion. Moreover, if an image can be sparsified with wavelet
transforms, the low rank structured matrix completion problem
can be solved using a pyramidal decomposition after applying
scale dependent k-space weightings. In addition, we show that
there exist additional inter-coil annihilating filter relationships
that are unique in pMRI, which can be utilized to construct a
concatenated Hankel matrix that is low ranked.

Another important advantage of the proposed algorithm is
that, compared to the existing CS-MRI, the reconstruction
errors are usually scattered throughout the entire images rather
than exhibiting systematic distortion along edges because the
annihilating filter relationships are specifically designed for
estimating the edge signals. Given that many diagnostic errors
are caused by the systematic distortion of images, we believe
that our annihilating filter-based low rank Hankel matrix
approach (ALOHA) framework may have a great potential in
clinical applications.

The remainder of this paper is as follows. Section II-B
discusses the relationship between the transform domain spar-
sity and the low-rankness of Hankel structured matrix in
weighted k-space. In Section III, pyramidal decomposition
and parallel imaging version of the proposed method will
be provided. Section IV then explains the implementation
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detail. Experimental results are provided in Section V, which
is followed by the discussion in Section VI and conclusion in
Section VII.

II. THEORY

A. Notations

A (n—d+1) x d Hankel structured matrix generated from
an n-dimensional vector x = [z[0],--- ,z[n — 1]]T € C" has
the following structure:

T
wx = | " S C
zln—d] [n—d+1] x[n — 1]

where d is called the matrix pencil parameter. We denote the
space of this type of Hankel structure matrices as H(n,d).
An n x d wrap-around Hankel matrix generated from an n-
dimensional vector u = [u[0], - -+ ,u[n—1]]7 € C" is defined

as:
i u[0] ull] uld —1] ]
u[1] u[2] uld]
Hi(u) = u[n— d  uln —.d +1] uln _ 1]
un—d+1] un—d+2] u[0]
uln — 1] u[0] uld—2] |

Note that n x d wrap-around Hankel matrix is equivalent to the
standard Hankel matrix with respect to an augumented vector
with the periodic boundary expansion:

T

u= uT U[O] u[l] - u[d _ 2] c Cn—&-d—l.

(d=1)

Therefore, the two terms - wrap-around Hankel matrix and
Hankel matrix with periodic boundary conditions - will be
used interchangeably.

B. Transform Domain Sparsity and Low-Rankness in Weighted
k-Space

Here, we describe the relationship between transform do-
main sparsity and low rankness of weighted Hankel matrix,
which is the key idea of the proposed algorithm. For better
readability, the theory here is outlined by assuming 1-D
signals, but the principle can be extended for multidimensional
signals [22].

Note that typical signals of our interest may not be sparse
in the image domain, but can be sparsified in a transform
domain. For example, consider a L-spline signal model [23],
[24]. Specifically, the signal f of our interest is assumed to
satisfy the following partial differential equation:

Lf =w (6)
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where L denotes a constant coefficient linear differential
equation (or whitening operator in [23], [24]):

L:=agd® +apg_ 1051+ ... + @10+ ao 7

and w is a driving continuous domain sparse signal or sparse
innovation given by

r—1
w(z) = Z ci0(x—xj) x; €[0,7]. (8)
§=0
Here, without loss of generality, we set 7 = n for a positive
integer n € Z. This model includes many class of signals
with the finite rate of innovations [19]-[21]. For example, if
the underlying signal is piecewise constant, we can set L as
the first differentiation. In this case, f corresponds to the total
variation (TV) signal model, and this TV signal model will be
extensively used throughout the paper.

Now, by taking the Fourier transform of (6), we have

r—1

j(w) = F{Lf(2)} = (@) f(w) = ) aje™"

Jj=0

€))

where

K-1

l(w) = ax (iw)® + ax_1(iw) + ... 4+a(iw)+ap .

In the standard Nyquist sampling, we should measure discrete
set of Fourier samples from a deterministic grid, whose grid
size should be set to the Nyquist limit A = 27/n to avoid
aliasing artifacts; so the discrete specturm can be represented
as

r—1

k] = 9(0)|yopa = HRAFRA] = cjemmei/m (10)
j=0

for k € [0,--- ,n—1]. The discrete spectral sampling model in

Eq. (10) implies that the unknown signal in the image domain
is a periodic streams of Diracs with a period n, which is indeed
a signal with the finite rate of innovation (FRI) with rate p =
2k/n [19]-[21]. Therefore, theoretical results from the FRI
sampling theory can be used [19]-[21], which tells us that we
can find a minimum length annihilating filter A[k] such that

(hx9)[k] = hlllglk —1] =0, Vk. (11)
=0

The specific form of the minimum length annihilating filter

h[k] for the case of (10) can be found in [19], which has the
following z-transform

k r—1
Wizt = (1 = e 2m/m271) | (12)

Jj=0

h(z) =

=0

whose filter length is » + 1 [19].

Now, let y = [g[0] gln —1]] and min{n — d +
1,d} > r. Suppose, futhermore, that a Hankel structure matrix
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H(y) € H(n,d) is constructed by

9[0] gl ﬂ[dgll
a1 012 0
) = y[ } y[ ] | y[: ] 1%
Jln—d gln—d+1] gln —1]

then we can show the following key result:

Theorem 2.1. Let r+1 denote the length of the minimum size
of annihilating filters that annihilates discrete Fourier data
Jlk]. Assume that min(n —d + 1,d) > r. Then, for a given
Hankel structured matrix in (13), we have

RANKIZ(y) =, (14)
where RANK(+) denotes a matrix rank.
Proof. See Appendix. O

Indeed, the proof of Theorem 2.1 informs us that the explicit
form of the Fourier samples §[k] given by

p—1ms—1
glk] = Z Z corkld® for 0 <k <n—1,
s=0 [=0
with

p—1
r= E mg
s=0

is necessary and sufficient condition to have a rank-r Hankel
matrix. Accordingly, we concluded that the signals with the
finite rate of innovation (FRI) correspond to this class signals
[25]. Table I summarizes the FRI models and the ranks of the
associated Hankel matrices [25].

We further showed that for the case of the cardinal spline
cases (where the knots {x;} are located on the uniform grid),
the k-space data is also periodic; accordingly, a wrap-around
Hankel matrix can be equivalently obtained from the periodic
boundary condition [25]. Moreover, the spectral weighting
comes from the DFT of the discrete whitening filter that has
attenuating behaviour at high frequency regions, which makes
the algorithm more robust to noise boosting. See [25] for more
details. This cardinal spline model will be used throughout the
paper for MR specific applications, where the unknown images
should be reconstructed on a fixed grid.

Now, it is important to emphasize that Theorem 2.1 implies

the following relationship:
FRI signals N
where F denotes the Fourier transform. Therefore, if some of
k-space data of a FRI signals are missing, we can construct
an appropriate weighted Hankel matrix with missing elements,
which are recovered based on low rank matrix completion
[26]-[30]:

(P) minme([jn RANK%(IH) (15)
subject to  Po(m) = Po(y) ,
where .
y=106f
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FRI signal name ‘ y(x),z € [0,7] z-transform of h[k] RANKIZ(Y)
Stream of Diracs Z;;é ¢id (x — xj) H;;é(l — et /T r
Stream of differentiated Diracs Size j;gl czlj5(j)(1: — Tk) H;‘;(}(l - e_’:’zmﬂ'/fz_i)df o d
- e U T=L1] _ —i2na; /T —
(Non)-uniform splines v(@) LL:];(Q;)KO I;izo cf Za f; )0 where [Ti=o(1—e Z) T
Piecewise smooth polynomials | y(z) = fOF (z) = 30— >0 ;09 (x — ) ;;é(l — e Emm/T e qr

TABLE I: FRI signal models, the associated annihilating filters in k-space, and the rank of the associated Hankel matrices
deriven from [25]. Here, the signal y(x) is periodic with the period of 7, and Vz; € [0, 7]. For cardinal spline cases, the knot
position x; are on integer grid. f (@)(z) denotes the ¢-th derivative.

and ® denotes the Hadamard product, and 1 and f denotes
the vectors composed of discrete samples of (w) and f(w),
respectively. By solving (P) we can obtain the missing data
m(w) = I(w)f(w) in the Fourier domain. Then, the missing
spectral data f (w) can be obtained by dividing by the weight,
ie. f(w) = m(w)/l(w), when I(w) # 0. As for the signal
f(w) at the spectral null of the filter /(w), the corresponding
elements should be specifically obtained as sampled measure-

ments, which can be easily done in MR acquisition.

C. Sampling Rate, Stability and Compressibility

Among various algorithm to solve matrix completion prob-
lem (P), one of the most well-characterised approaches is a
convex relaxation approach using the nuclear norm [26], [27],
[29], [30]. More specifically, the missing k-space elements can
be found by solving the following nuclear norm minimization
problem:

(P1) mingecn  ||22(m)]]« (16)
subject to  Pp(m) = Po(y)
where || - ||« denotes the matrix nuclear norm. Therefore,

the remaining question is to verify whether the low-rank
matrix completion approach (P1) does not compromise any
optimality compared to the standard Fourier CS with the [y
sparsity penalty, which is the main interest in this section.

Toward this goal, we first derive an algebraic bound. Con-
sidering that min{n —d+1,d} > r+1 to allow rank deficient
Hankel matrix, we have n > r+d > 2r+1. In fact, by taking
all n samples as measurements, we can obtain the bunched
sampling pattern used in the classical sampling theory of FRI
signals [19]-[21], where the number of required samples are
equal to

m > 2r + 1. (17)

Note that the minimum sampling rate in (17) is indeed equal
to the algebraic bound of the standard compressed sensing
approach [1], [2]. Second, we are interested in deriving the
performance guarantee with random Fourier samples. Here,
the notion of the incoherence plays a crucial role. We recall
the definitions using our notations. Suppose that M € C™1 *"2
is a rank-r matrix whose SVD is UXV*. M is said to satisfy

the standard incoherence condition with parameter  if

r
max [|[Ue;lls < /L5,
1<i<ng n

ur
(ax [IV7ella < /7

where e; denotes the standard unit coordinate vector with 1
at the i-th elements, and zeros in all other locations. Then,
by extending the result by Chen and Chi [31], we obtained a
general performance guarantee [25]:

Theorem 2.2. [25] Let Q@ = {j1,...,Jm} be a multi-set
consisting of random indices where ji’s are i.i.d. following the
uniform distribution on {0, ... ,n—1}. Suppose that a Hankel
matrix is constructed from y € C" is of rank-r and satisfies
the standard incoherence condition in (18) with parameter [i.
Then, there exists an absolute constant ¢y such that y is the
unique minimizer to (16) with probability 1 — 1/n?, provided

19)

(18)

m > c1ucsr log® n,

where a = 2 and ¢, := n/d if the Hankel matrix has the wrap-
around property; o = 4 and c¢s := max{n/(n—d+1),n/d},
otherwise.

Proof. See our companion paper [25]. O

In compressed sensing MRI, the reconstruction image grid
is always fixed; therefore, cardinal spline model that has knot
locations on a fixed grid is more appropriate. Therefore, the
results in (19) implies that the required number of samples
are proportional to the sparsity level up to logQ(n) factor.
Considering that the standard compressed sensing analysis
showed that the required number of Fourier samples in the
Iy minimization approach is proportional to the sparsity level
up to log?(n) factor for some integer ¢ [1], [2], the result in
(19) is comparable to the standard CS-MRI approach.

In practice, we observed that the number of k-space samples
are only a few times the sparsity level, which are not far from
the algebraic bound (17). This will be again confirmed by
the empirical verification in our paper. Moreover, controlled
numerical experiments in [25] confirmed that the proposed
low-rank matrix completion approach is consistently better
than the standard CS in various signal models. This suggests
an important observation: by reformulating the compressed
sensing problem as a low rank Hankel structured matrix
completion problem in the measurement domain, we may not
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expect any performance loss.

In Theorem II.3 of our companion paper [25], we also
considered the recovery of y from its partial entries with
noise, and derived a more improved version of the stability
results than that of Chen and Chi [31]. Note that the stability
result in [25] can be used to show the compressibility of the
proposed structured low-rank matrix completion method. In
the compressed sensing literatures, the compressibility implies
that the dominant r-coefficients can be stably recovered by
compressed sensing algorithms even though the underlying
signal is not perfectly r-sparse [1], [2]. More specifically, let
y(x) be s-sparse FRI signal. Suppose, furthermore, that the
sampling rate in (19) is only sufficient to recover r-dominant
sparse coefficients with » < s. Then, the contribution of the
remaining s — r non-zero coefficients works as noises in the
Fourier domain with an appropriate noise bound J. Therefore,
the stability result in [25] guarantees the stable recovery of
r-dominant sparse coefficients, implying that the proposed
method can be used to recovery signals which is not perfectly
r-sparse. Recall that this compressibility is one of the most
basic and fundamental components of compressed sensing,
making CS approaches very effective for reconstructing MR
image that is not perfectly sparse [1], [2].

III. ALOHA FOR ACCELERATED MRI

Inspired by the theoretical finding in the previous section,
this section will explain two realizations of the low-rank matrix
completion approaches that are useful for MR applications.
The first one is wavelet-based pyramidal decomposition ap-
proach and the second one is a generalization for multichannel
parallel MRI. Note that these are particular instances of the
ALOHA algorithm and other variations of ALOHA may
be possible for various scenarios as demonstrated in recent
applications [32]-[34].

A. ALOHA for Wavelet Sparse Signals

One of the technical issues associated with the wavelet
analysis is that the standard wavelet multi-resolution analysis
are usually conducted on fixed grid; so, the signal model in (6)
should be modified. Toward this goal, we found that a cardinal
spline model [23], [24], [35] is very useful.

A cardinal spline is a special case of a non-uniform spline
where the knots are located on the integer grid. More specifi-
cally, a function f(z) is called a cardinal L-spline if and only
if

Lf(z) = w(z),

where the operator L is continuous domain whitening operator
and the continuous domain sparse innovation signal w(z) is

given by
w(x) := Za[p]é(x -p),

(20)

21

whose singularities are located on integer grid. Here, we
assume that the number of nonzero coefficients {a[n]} on the
integer grid is r.

One of the main advantages of using cardinal setup over
the non-uniform splines is that we can recover signals by
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exploiting the sparseness of sampled signal rather than ex-
ploiting off the grid singularity. More specifically, consider “L-
compatible” generalized wavelets which, at a given resolution
level s, are such that!

Ys(x) = L s ().

Here, L* is the adjoint operator of L and ¢4(x) is some
smoothing kernel with good localization properties. Then, the
wavelet analysis gives us

(22)

Us(x) = <faws(7‘r)>
= (f(),L¢s(- — 2))
= (Lf(),ds(- — 2))

)
= (w(),0s(- —x)) = (¢s * w)(w)

= Y aliléu(z—i

1€EZ

(23)

where ¢, (x) = ¢s(—x). Note that u,(x) is indeed a smoothed
version of continuous domain innovation w(z) in (21), because
all the sparsity information of the innovation w(z) is encoded
in its coefficients {a[i]}, and aside from the interpolant ¢,(-),
ug(x) in (23) still retains the same coefficients of the original
innovation (21).

In particular, if the underlying L-cardinal spline signal is a
TV signal, ie. L = %, then we can define the s-scale wavelet

as
s x
Us(@) = 27 (55 - (24)
where the centered Haar wavelet is given by
17 _% <zx<0
YHaar(2) = ¢ =1, 0<z <3 (25)
0, otherwise

For the given Haar wavelet, the corresponding smoothing
kernel ¢(x) that satisfes

wHaar(aj) = L*¢($) s (26)
is given by [23], [24]:
r—1, -1<z<0
d(x) =— AN (22), where A(x):=¢ —zxz+1, 0<z<1
0, otherwise
because L* = —L = —% for TV signal model. Note that

A(2z) in (27) is the triangular function with the support size
of 1 as shown in Fig. 1(b), which is associated with the Haar
wavelet basis in Fig. 1(a) thanks to Eq. (26).

One of the most fundamental and novel observations made
in this paper is that the basis composed of triangular functions
allow us to analyze the following sampled signal ws(x) rather

IThe analysis in the following is significantly influenced by the theory of
sparse stochastic processes [35], so we follow the original authors’ notation.
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Yo,0(z) Yo,2(2) —¢o,0(x) —¢0,2(2)
|_||_J I_Il_J
—po1()  —os3(x)
U)U.1(-T)|_| T/J(),:%(Th
L] L]
roe) —¢10(z)
,—I 1,0
@) —p11(x)
1
L]
Ya,0() /WQU(T)\‘
L]
(a) (b)

Fig. 1: (a) Haar wavelet basis, and the (b) associated hierar-
chical triangular basis [35]. Note that absolute scale is ignored
for simplicity.

than directly analysing u(z):

us(x) Z d(z—2%p)

p=—00

ws(z) =

o0

= > ulplo(z —2°p)

p=—00

(28)

where
us[p] = s (t)|;ps)y -
In the following, we will discuss the property of w(z) for
s =0 and s > 0, respectively.
1) When s = 0: In this case, we have

wol@) = 3 uolpld(z—p)
— 3 (90 a)lplo(w — p)
= Y aléte-p)

where we use the fact that ¢g(x) = ¢o(—2) in (27) and its
support size is 1. This implies that wo(z) has the same sparsity
level as the underlying innovation w(x), implying that wq(x)
is a stream of r-Diracs. Therefore, for the finite supported
signal w(x) with the support size n, the resulting Fourier
spectrum becomes the discrete Fourier transform (DFT) such
that

wolk] = @o(e™)] _yrp/m = Yok f[K]

where to[k] and f[k] denote the DFT spectrum of tg(x)
and f(z), respectively. Because to[k] can be computed de-
terministically, we can construct a Hankel matrix ¢ (Wg) =
H (1[)0 of ). Moreover, thanks to the sparsity preservation, we
have

RANKSZ (Wo) = RANKA (o @ f) = 7. (29)
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In addition, due to the periodicity of DFT spectrum, we can
use the following wrap-around Hankel matrix:

He(Wo) =
[ wWo|0] wo 1] wold — 1] ]
wo[1] wo[2] wold]
doln—d ol —d+1] doln—1] | . (30)
’UA)()[TL—d'i‘ 1] If]o[n—d—f'?] ’LZ)()[O]
dofn — 1] 0] dold—2] |

where the bottom block is augmented block. As discussed
before, this can be easily constructed as the standard Hankel
matrix by imposing the periodic boundary conditions. Since
the bottom block can be also annihilated using the same
annihilating filter, we can see the rank of the wrap-around
Hankel expansion is the same as the original Hankel structured
matrix:
RANK.ZZ.(W() = RANKIZ (Wq) = T.

Therefore, the missing DFT coefficients can be interpolated
using the following low-rank matrix completion:

| ()]l«
Po(g) = Po(lof)

€29

mingecr
subject to
where 1 = 1&0.

2) When s > 0: First, we consider s = 1. In this case, we
have

wi() = wi(z) Y 8z —2p)
= > w(2p)i(z—2p)
= ) (drxa)2p]6(x —2p)

Then, as shown in Fig. 2(a)(b), we can easily see that the
sparsity level of the sequence (¢ * a)[2p] does not increase
and, furthermore, in many cases, it is reduced nearly by half.

~u(x)

N, L

—u(x)

Fig. 2: (a) Best case where the sparsity is reduced by half
across scale, and (b) the worst case where the sparsity is
persevered across scale..

On the other hand, the spectrum of wi(x) has aliasing
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components due to the dowsampling by factor 2, so we have

inlk] = 3 (BRFR + $ulk+ /2 k4 /) G2)

whose period is reduced by n/2. Because of the reduction
of the period, in constructing the Hankel matrix (30), we only
need to consider the low frequency spectrum up to n/2, which
can reduce the complexity of the structured matrix completion.
However, one key technical challenge is due to the aliasing
component in (32) which also aliases into the low frequency
part.

To deal with this problem, we propose the following ap-
proach. Specifically, let fiow(x) denote the ideal low-pass part
of the signal f(z) by zeroing out the DFT spectrum above
n/2, ie.

flow(x) = thW(q") * f(m)7
where hioy () denotes the ideal low-pass filter. Then, for L =
4 it is easy to show the following:

dz’
L fiow (@) = hiow(z) * Lf () = hiow(x) * w(x),

because the differentiation and the linear operator L commutes.
Therefore, for given ¢(z) in (27), we have

u (@) = (fow()s (- — )

= (fiow("),L7¢s(- —2))

= ((how *w)(-), ¢s(- — ))
= Z ali](Piow * ¢s) (T — 1)

i€Z

and the corresponding sampled signal becomes

wiV(@) = u(@) Y oz —2p)
- Z (1 * a % hiow)[2p]6(z — 2p)  (33)

The role of ideal low pass filter is doubling the resolution,
so the non-zero coefficient of (¢; * a * hiow)[p] increases
approximately twice than (¢ * a)[p]. However, in (33), the
discrete signals are down-sampled by factor of two with zero-
padding, so we can assume that the net sparsity level may not
increase from using only ideal low-pass signals. On the other
hand, one of the important benefits of using this trick is that
we no more have aliasing component in its DFT spectrum:

WP = (ST + bk + /2 4 n/2)

= %1&1 (k] f1o% k], k=0,---,n/2—1,34)

because the frequency content of f°% above n/2 is zero.
Therefore, the missing DFT coefficients at s = 1 can be
formulated using the following reduced size low-rank matrix
completion problem:

[ 7(&) |«
PQ(g) = Pg(i ® f'low) s

where 1 = 1/31 and f'° denotes the Fourier samples at only

(35)

mingeccny/2

subject to
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below n/2. Note the computational complexity reduction due
to the reduced Hankel matrix size. For the scale s > 2, we
can perform similar procedure.

Accordingly, the resulting algorithm is a pyramidal decom-
position of a low rank Hankel matrix completion algorithm as
shown in Fig. 3 to decouple the aliasing components in wavelet
analysis by slightly compromising sparsity level. Here, the
low-rank matrix completion is solved from the lowest scale,
i.e. s = 0, up to the highest scale (see caption of Fig. 3 for
more discussion of the figures). Here, a care needs to be taken
because the low frequency k-space data corresponding to the
scaling function coefficients should be acquired additionally
during MR data acquisition. This information as well as the
annihilating filter size then determines the the depth of the
pyramidal decomposition as will be discussed in detail later.

There are several advantages of using wavelet approaches
compared to the direct operator weighting in ALOHA frame-
work. First, the pyramidal decomposition structure for low
rank matrix completion can significantly reduce the overall
computational complexity. Moreover, it has been observed
in [35] that the wavelet approach is more robust for noise
and the model mismatch, which is also consistently observed
in ALOHA framework as will be discussed later. Finally, in
solving the s-scale of structured matrix completion, rather than
starting from zero-initial guess for the missing k-space data,
they can be initialised using the values estimated at the lower
scale, i.e. s — 1. This significantly accelerates the convergence
of the algorithm.

Before we finish this section, it is worth to mention that a
similar fine-to-coarse scale wavelet coefficients reconstruction
was recently proposed in Fourier compressed sensing problem
[36].

B. Generalization to Parallel MRI

Beside the low-rank property originating from sparsity in
the transform domain, there exists an additional low-rank
relationship that is unique in parallel MRI. The relationship we
described here has similarity to SAKE and P-LORAKS when
the image itself is sparse, and our contribution is its gener-
alization to transform domain sparse signals and theoretical
verification. Here, to allow seamless integration with wavelet
analysis, the following theory is derived based on the cardinal
spline models and wavelet analysis in the previous section.

In pMRI, the unknown image g¢;(z) from the i-th coil can
be represented as

gi(z) = si(x) f(x),

where s;(x) denotes the i-th coil sensitivity map, f(x) is an
unknown image, and N, denotes the number of coils. To make
the algorithm general, we impose the most basic assumption:
the coil sensitivity map is bounded, i.e. |s;(z)| < 0o, Vi. The
main goal of parallel imaging is, then, to exploit the common
signal f(z) that is measured through multiple channels. There
are two distinct scenarios: 1) g;(x) is sparse by itself, and 2)
gi(x) can be sparsified by applying transform such as total
variations. In the following we investigate the two scenario
separately.

i:17"'aN67 (36)
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Fig. 3: ALOHA implementation using pyramidal decomposition. Construction of Hankel matrices from (a) k,-k, data by
assuming that 2-D dydadic wavelet transform of images is sparse, and (b) k — t subsampled data by assuming that dynamic
images can be sparsified using spatial wavelet and temporal Fourier transform. In the box, each reconstruction unit at the s-
scale (the s-scale ALOHA) is illustrated, which consists of five steps: (1) the k-space region extraction, (2) k-space element by
element weighting using s-scale wavelet spectrum \/1271[)(25w), (3) low-rank Hankel matrix completion, (4) k-space unweighting
by dividing the interpolated k-space data using the s-scale wavelet spectrum, and (5) the k-space data replacement using the
interpolated data. Note that for the case of dynamic MRI, one dimensional weigting is required along the phase encoding
direction, whereas 2-D weighting is necessary for the case of static imaging. In the figure, %' corresponds to the pseudo-
inverse operation that takes the average value from the Hankel matrix and putting it back to the original k-space domain. The
color coding in the Hankel structure matrix indicates the values of weighting.

1) Sparse Signals: Under the cardinal setup, to model the stream of r-Diracs whose non-zero coefficients exist only on
image domain sparse signal on a fixed grid, we again assume the index set Iy:
that g;(x) is a stream of Diracs given by

fl@) =) flllo(z—1),
gix) =Y gillld(x—1), i=1,---,N, zezzf

leI; .
€ and, accordingly, we have

where I; is a non-zero index set on the integer grid. Now,

define the union of index set gi(x) = Z silllflJo(z —1), where s;[l] = si(z)[,—; -
N, lely
Iy = U I, r=|I|, Then, under the usual assumption of the finite supported signal
i=1 with the support size n, the resulting spectrum becomes DFT
where | - | denotes the cardinality of a set. Because the coil

sensitivity map is bounded, Eq. (36) implies that f(x) is a
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spectrum represented by

5[0 =" flUs[(k — 1)),

=0

gilk] = flll @ (37)
where (-),, denotes the mod operation, because the multipli-
cation in the time domain becomes periodic convolution in
the DFT domain. Therefore, a Hankel matrix J#.(g;) with the
matrix pencil size d and the periodic boundary condition can
have the following decomposition:

S (&) = A(£)C(8;) € (38)

where #(f) is n x n wrap around Hankel matrix and C(8;)
are given by

fo) F e fle-1
1 2] - 0
ey = | AT
fin=11 flo] fin—2]
and
5:[0] 41 $i[d—1]
si[n — 1] §1 [0} §z[d -2
C(él) _ : : : c (Cnxd
i) sl il
Then, for a given horizontally agumented matrix )y,:
Y = [Hi(81) H(gn,)| € CND (39)
with 2#(g;) € C"*?, we have the following decomposition:
Vh = A (F) [C(31) C(3n,)] - (40)
Due to the rank inequality RANK(AB) <

min{RANK(A), RANK(B)}, we therefore have the following
rank bound:

RANKY), < RANKAZ(F) = |I;| =7 41

where the equality comes from Theorem 2.1.2 Therefore, if
the matrix pencil size d is chosen such that N.d > r, then the
concatenated matrix becomes low-ranked.

Note that the decomposition structure in (40) implies the
following inter-coil annihilating filter relationship:

gilk] ® 8;[k] — g;[k] ® 5,[k] =0, i#j,

which are quite often used in multi-channel deconvolu-
tion problems [37]. This is because (]\2[0) combination of
the vertically augmented sensitivity filter vectors with the
appropriate +1,—1 weighting live in the null space of
[C(81) -+ C(8n.)] (accordingly, in the null space of Y),)

[37].

2) TV Signals: Similar to the previous section, we also
assume that g;(x) is a cardinal L-spline model (20) where
L = L. Because s;(z) is bounded and the following chain

2In this special instance, we do not even need Theorem 2.1. This is because
n X n-Hankel matrix #.(f) becomes circulant, so the rank of the circulant
matrix is equal to the non-zero elements after taking DFT.

http://dx.doi.org/10.1109/TCI.2016.2601296

rule holds:
Lgi(z) = si(z)Lf(z)+ f(z)Lsi(z) ,

the cardinal L-spline model assumption implies that both
Lf(z) and Ls;(z) are also cardinal L-splines:

izla"'7NC7

Lf(z) =w(z):= Y all]é(z—1) (42)
lel,

Lsi(z) =bi(z):= Y b[l]o(z—1) (43)
leTy,

where I, and I, denote the index sets where a[l] and b;[l] are
non-zero, respectively. We further define the union set

NC
1=1

Then, the wavelet analysis at the O-th scale using centered
Haar wavelet gives us

(9i(-), Yo(:
(gi(-), L*¢o(- — x))

= (Lgi("), do(- — x))
(si(- )Lf() Go(- —x)) +
allls;(Ddo(x — 1) +

(44)

— 1))

up(w) =

(f()Lsi(). do(- — )
S bl @ bolx — 1)

ZGIbi

(45)

where we use ¢g(x) = ¢q(x) for the case of centred triangular
basis. Recall that one of the main advantages of cardinal
spline model is that the sparsity level is still preserved after
discretization, so we can analyze the following signal:

wh(@) = uj(x)Y sz —1) (46)
=7
= all]si[i]6(x — 1) + > bill] f[i]6(z — 1) 47
leF 1€S;
where s;(i] := s;(x)|,_; and f[i] := f(z)|,_,. We further

define a truncated sequences f[(]:

furll] = {f i, te (48)

0,  otherwise
where [, is defined in (44). Then, for the finite supported
signal with the support size n, the resulting spectrum becomes
DFT spectrum such that

W [k] Dolk]gi (k]
= DFT {all]s;[l] + b:[l] fer[I]} (49)
= W[k] ® §[k] + ferlk] ® bi[K] (50)

where (k] denotes the DFT spectrum of (42), and fy,.[k] is the
DFT spectrum of the sequence in (48). Then, the n x d Hankel
matrix with the periodic boundary condition constructed from
w}[k] can be decomposed as

A g) = A(W)C(&) + AE)Ch) (51
where 1 = 1&0 and (W) € C™" and C(8;) € Cnxd gre
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given by
HAl I
He(w) = : : :
i —1] @[] ifn — 2]
and
Y=
) = : : 7 e
§i.[1] §i.[2] §i.[d]

Similarly, we can define % (f,,) € C"*™ and C(b;) € C"*4,
Then, a horizontally agumented matrix )}, can be decomposed
as following:

Vo= [Hleg) HA(ogn)] (62
= Hu(w)[C(s ) C(5n.)]
+,(8,) [C(b C(bw,)] (53)

where 1 = ). Due to the rank inequality RANK(AB) <
min{RANK(A),RANK(B)} as well as RANK(A + B) <
RANK(A) + RANK(B), the rank of the concatenated matrix
is, therefore, given by

< RANKJ(W) + RANKAZ(f;,)
= ‘Ia‘ + |Ib|

where |I,| and |Ig| denote the cardinality of the sets I, and
I, defined in (42) and (44), respectively. Therefore, if L f(x)
and Ls;(z),i = 1,---, N, are sufficiently sparse such that
|Io| + |Is] < N.d, then the resulting concatenated Hankel
matrix becomes low-ranked. The analysis can be also extended
for the scale s > 1 by combining the discussion in the previous
section.

RANKY},
(54)

3) Low-Rank Matrix Completion: Due to the aforemen-
tioned low-rankness of the concatenated matrix, the multichan-
nel version of the ALOHA can be formulated as

A (m,)] (55)
i=1,,N..

RANK [ (my)
Po(m;) = Po(10 &),

MM m; }7_,

subject to

Before we finish this section, we like to investigate the fea-
sibility of the different concatenation order. More specifically,
one could construct a vertically augmented matrix ),:

A0 g1)
c (CNunXd )

yv = :
H(1©gw,)
Due to the wrap-around structure of the individual Hankel
matrix, note that ), is not a transpose of ). Accordingly, the

analysis in the previous section does not hold and we cannot
utilize the low-rankness from the inter-coil relationship.

(56)

However, if we stack Hankel matrix without wrap-around
property (ie. #(1® g;) € Cn=d+Dxd are ysed in (56)
instead of (1 g;)), then due to the special structure of the
Hankel matrix, ), becomes the transpose of }}: accordingly,
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by interchanging the role of n — d + 1 and d, one can make
the rank of ), equal to that of ). However, the theoretical
analysis of the concatenated Hankel matrices without wrap
around property turns out to be quite involved due to the
boundary condition and data truncation; and even more, it is
even not necessary in accelerated MR except for the super-
resolution imaging (see [22]), because the image should be
recovered on a fixed grid rather than on a continuum which
makes the cardinal spline model more appropriate. Under this
condition, the performance of the resulting rank minimization
for the vertical stacking approach becomes deteriorated as will
be shown in Discussion.

IV. IMPLEMENTATION DETAILS
A. 2D Hankel Structured Matrix Construction

In 3D imaging or dynamic acquisition of MR data, the
readout direction is usually fully sampled and the other
two encoding directions are under sampled, so the problem
becomes a 2-D imaging problem. Thus, this section presents
an explicit way of constructing a 2D Hankel structured matrix.
Specifically, if A[n,m] is a p1 x ¢1 size 2D annihilating filter,
then the corresponding annihilating filter relation is given by

p1i—lqgi—1

(hxf Zthy n—i,m—j]=0,

=0 7=0

(57)
for all n,m € Q. Let n; x m; k-space data matrix be defined
by

f10,0] F10,my =1

bq)
I

f[nl_lao] f[nl_lvml_l]
Similarly, we define p; X ¢; annihilating filter matrix H. Then,
(57) can be equivalently represented as

H(F)h =0,

where a 2-D Hankel structured matrix J#(F') is constructed
as

(58)

«75@0) f -1
H(f H H(f,
L
%(ﬁ’”l_‘Il) %(fml—q1+1) %ﬂ(fml—l)
with 2 (f;) € Clm1=PrtD)xp1 gjven by
£10, 4] F11,4) o flpr = 1,4)
flma = p1,4] i —p1+1,4] flm = 1,4)
and the annihilating filter vector is given by
b = VEC(H) , (60)

where the overline denotes an operator that reserves the order
of a vector. Similar to 1-D cases, we again impose a periodic
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boundary condition to construct a wrap-around Hankel matrix.
Using this, we can construct an augmented matrix ) in (52)
from N.-channels.

Proposed
(n=5,m,=5, p;=q,=3)
Coil 1
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Fig. 4: (a) Area where annihilation property holds. Various
ways of constructing block Hankel matrices: (b) ALOHA, (c)
SAKE, and (d) LORAKS. In (d), Nr denotes the number of
neighborhood pixels.

The augmented matrix structure .#(F) illustrated in
Fig. 4(b) is similar to those of SAKE and C-based
LORAKS/P-LORAKS in Fig. 4(c) and (d), respectively, with
the following differences. Compared to SAKE, ALOHA stacks
the multi-coil Hankel matrices side by side. Second, unlike the
SAKE and ALOHA, C-based LORAKS uses an adjustable
parameter R as the radius of non-separable neighborhoods
according to the software manual provided by the original
authors. Moreover, the most important novelty of the proposed
method is the k-space weighting to construct a weighted
Hankel structured matrix.

B. Hankel structured matrix completion algorithm

In order to solve Egs. (15) and (55), we employ an SVD-
free structured rank minimization algorithm [38] with an
initialization using the low-rank factorization model (LMaFit)
algorithm [39]. This algorithm does not use the singular value
decomposition (SVD), so the computational complexity can
be significantly reduced. Specifically, the algorithm is based
on the following observation [40]:

Al = i Ul? V|2 61
Al _mlr;]VHII I7 + [IVIz (61)

Hence, (15) can be reformulated as the nuclear norm mini-

mization problem under the matrix factorization constraint:
min Uz + V]2

U,V:5(m)=UVH H ||F || HF

Po(m) = PQ(E.)

subject to (62)

By combining the two constraints, we have the following
cost function for an alternating direction method of multiplier
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(ADMM) step [41]:

1
LW, V,im, A) o= (m) + 5 (U7 +VIE)

+ 501 (m) = UV A (63)
where +(m) denotes an indicator function:

J(m) = { 0, if Po(m) = Pa(f)
oo, otherwise
One of the advantages of the ADMM formulation is that each
subproblem is simply obtained from (63). More specifically,
m D U+ and V(*+1) can be obtained, respectively, by
applying the following optimization problems sequentially:

min,y, ¢(m) + %H%(m) —_ymymH A(n)”QF

ming %HUH% + &) (m D) — gy mH 4 A2,

miny $(|V[|% + &[5 (m™ D)) - yr+DyH A(")||(%64)
and the Lagrangian update is given by

A(n+1) _ y(nJrl) o U(n+1)v(n+1)H + A(n) )

It is easy to show that the first step in (64) can be reduced to
m*+) = po. ot {U<">V<">H - A<">} + Po(F), (65

where Pq. is a projection mapping on the set Q¢ and J#7
corresponds to the Penrose-Moore pseudo-inverse mapping
from our block Hankel structure to a vector. Hence, the role
of the pseudo-inverse is taking the average value and putting
it back to the original coordinate. Next, the subproblem for U
and V can be easily calculated by taking the derivative with
respect to each matrix, and we have

U = gy (YD 4 AM) Y (7 4 W(n)Hy(n))—l

VD) — gy (D) 4 A(n))H U+ (T + uU("H)HU(”“))_l

(66)
Note that the computational complexity of our ADMM al-
gorithm is dependent on the matrix inversion in (66), whose
complexity is determined by the estimated rank of the Hankel
matrix. Therefore, even though the Hankel matrix has large
size, the estimated rank is much smaller, which significantly
reduces overall complexity.

Now, for faster convergence, the remaining issue is how
to initialize U and V. For this, we employ an algorithm
called the low-rank factorization model (LMaFit) [39]. More
specifically, for a low-rank matrix Z, LMaFit solves the
following optimization problem:

[nin %HUVH — Z||% subject to P;(Z) = Pi((f)) (67)

and Z is initialized with S (f) and the index set I denotes
the positions where the elements of .7 (f ) are known. LMaFit
solves a linear equation with respect to U and V to find their
updates and relaxes the updates by taking the average between
the previous iteration and the current iteration. Moreover, the
rank estimation can be done automatically. LMaFit uses QR
factorization instead of SVD, so it is also computationally
efficient. Even though the problem (67) is non-convex due

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

to the multiplication of U and V, the convergence of LMaFit
to a stationary point was analyzed in detail [39]. However,
the LMaPFit alone cannot recover the block Hankel structure,
which is the reason we use an ADMM step afterward to
impose the structure.

Note that the automatic rank estimation is another important
advantages over SAKE and LORAKS that require time con-
suming full search or manual tuning for the rank estimation.

C. Reconstruction Flow

As shown in Fig. 3, the ALOHA framework in the present
work is comprised with several major steps: pyramidal decom-
position, k-space weighting, Hankel matrix formation, rank
estimation, SVD-free low rank matrix completion, and k-space
unweighting. Here, we will explain these in more detail.

The pyramidal decomposition is performed as follows. First,
in static MR data acquisition illustrated in Fig. 3(a), the k,—k,
corresponds to the two phase encoding directions that are
downsampled. Thus, the Hankel matrix is constructed from
kg — k, data. After a k-space interpolation from a finer scale,
the data at the current scale is defined to contain one-fourth
of data around zero frequency from that of the previous scale.
Second, in the case of dynamic MR imaging shown in Fig.
3(b), k, samples from the readout direction are fully acquired,
whereas the k, directional phase encoding are downsampled
along the temporal direction ¢. Therefore, the data in k, — ¢
space (or simply, k — ¢ space) are downsampled, from which
we construct a Hankel structure matrix. In pyramidal decom-
position, after a k-space interpolation from a finer scale, the
k, —1 data in the current scale contains a half of the data from
that of the previous scale. Note that the wavelet decomposition
is performed only along the spatial domain, so the pyramidal
decomposition is only performed along k, direction. This
construction of Hankel matrix is due to the observation that
the dynamic signal is sparse in spatial wavelet and temporal
Fourier transform domain [32]. See more details in our recent
work [32].

In both cases, the estimated k-space data at the lower
scale are used to initialize the low rank matrix completion
algorithm at the current scale. This accelerates the convergence
speed. Moreover, due to the additional chance of refining
the estimates, more important k-space samples at the low
frequency regions are refined furthermore compared to the
high frequency k-space samples. Consequently, the overall
computational burden of the low rank matrix competition
algorithm is significantly reduced while the overall quality is
still maintained.

The k-space weighting is performed using wavelets. Specif-
ically, we use a Haar wavelet expansion whose spectrum is

given by
. iw [sinw/4\>
ﬂ’o(w)Q( /4 ) :
The corresponding k-space weighting at the s-scale is given

i2%w (sin2%w/4\>
25w /4 '

(68)

- 1

(69)
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For the case of static MRI in Fig. 3(a), we use 2-D weighting
by assuming that the image is sparse in 2-D dyadic wavelet
transform domain. Care needs to be taken when applying
the weighting to 2D Fourier domain because there are two
frequency variables (ws,w,). One could use a separable

weighting (wy,w,) = [(ws)l(wy); however, the resulting
problem is that the missing k-space components along the
frequency axis w, = 0 or w, = 0 cannot be recovered.

Consequently, we applied the weighting sequentially along
each axis, i.e. we solve (15) by applying Z(ww) first, which is
followed by solving (15) with ] (wy). However, simultaneous
weighting would be possible as demonstrated in a recent
work for off-the-grid recovery of piecewise constant image
[22]. For the case of dynamic imaging in Fig. 3(b), one
dimensional weighting along the phase encoding direction was
applied as explained in detail in [32]. Finally, after the k-
space interpolation, the k-space unweighting is done in k-space
pixel-by-pixel by dividing the reconstructed value with (69).
Note that (69) has zero value at the DC frequency. However,
because we acquire the DC value as well as some of the low
frequency k-space data, the problem of dividing by zero never
happened.

We used TITAN GTX graphic card for graphic processor
unit (GPU) and i7-4770k CPU and the codes were written
in MATLAB 2015a (Mathwork, Natick). To accelerate the
algorithm, most part of the MATLAB codes except the LMaFit
were implemented using Compute Unified Device Architecture
(CUDA) for GPU. LMaFit step was implemented using the
original authors’ CPU version code.

D. MR Acquisition and Reconstruction Parameters

To assess the performance of ALOHA for single coil
compressed sensing imaging, k-space raw data from an MR
headscan was obtained with Siemens Tim Trio 3T scan-
ner using balanced steady-state free precession (bSSFP) se-
quence. The acquisition parameters were as follows: TR/TE
= 10.68/5.34ms, 208 x 256 acquisition matrix (partial Fourier
factor 7/8, oversampling factor 50%), and number of slices is
104 with 2mm slice thickness. The field-of-view (FOV) was
178 x 220mm?. We used the central coronal slice.

A retrospective down-sampling mask was generated accord-
ing to a two dimensional Gaussian distribution and the data at
the central 7 x 7 region around zero frequency were obtained
additionally. This is equivalent to assume a 3D imaging
scenario where the readout direction is fully sampled and the
downsampling is done in the remaining 2-D phase encoding
direction. Downsampling factors of four was used to generate
sampling masks. However, data was obtained as partial Fourier
measurements, so effective downsampling ratio was 4.13. The
2-D k-space weighting using (69) was used. The ALOHA
reconstruction was conducted using the following parame-
ters: three levels of pyramidal decomposition, and decreasing
LMaFit tolerance values (5 x 1072,5 x 1073,5 x 10™%) at
each level of the pyramid. In addition, an initial rank estimate
for LMaFit started with one and was refined automatically in
an increasing sequence, the annihilating filter size was 23x23,
and the ADMM parameter was p = 103,
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For the compressed sensing approach, we used two ap-
proaches with the same data and the same sampling masks: (1)
the sparsity in wavelet domain (which we denote [;-wavelet)
[3], and (2) the split Bregman method for the total variation
[42]. In case of [;-wavelet approach, we implemented an
ADMM algorithm using wavelet domain sparsity. In addition,
for comparison with the existing state-of-the art approach
using Hankel structured matrix completion algorithm, C-based
LORAKS was compared because it exploits the image domain
sparsity. There are other types of LORAKS such as G-based
LORAKS and S-based LORAKS, which may improve the
quality of image better than C-based LORAKS depending on
situtation. However, because C based-LORAKS (from now on,
referred as ‘C-LORAKS?’) is similar to the ALOHA without
weighting, we use C-LORAKS as a reference to contrast why
the proposed ALOHA framework has many advantages. The
implementation of C-LORAKS was based on the source code
available in the original author’s homepage, which requires
manual setting of estimated ranks. We chose the rank for LO-
RAKS that gave the best reconstruction quality. In Discussion,
we also provided reconstruction results by ALOHA without
weighting to control the confounds and confirm the importance
of the k-space weighting in constructing Hankel matrix.

The parameters for the [;-wavelet and TV approaches were
optimized to have the best performance in terms of the
normalized mean square error (NMSE), which is defined by
NMSE(x) = |lx —yl|3/|lyll3, where x and y denote the
reconstructed and the ground-truth images, respectively. C-
LORAKS parameters were also chosen manually to give the
best reconstruction quality.

To evaluate the performance of ALOHA in static parallel
imaging, k-space raw data from an MR headscan was obtained
with Tim Trio 3T scanner using 2D GRE sequence. The
acquisition parameters were as follows: TR/TE = 8.6/4ms,
231 x 512 acquisition matrix, and six z-slices with 7mm slice
thickness. The field-of-view (FOV) was 250 x 250mm?2, and
the number of coils was four. Retrospectively undersampled
2-D k-space data at the acceleration factor of four were
obtained according to two dimensional Gaussian distribution
in addition to the 7 x 7 central region around zero frequency.
The data from 4 receiver coils were used. For comparison,
we used the identical data and sampling masks for SAKE
with ESPIRIT [16], [43]. Note that GRAPPA [13] requires
ACS lines, so with the additional 50 samples along ACS,
the effective downsampling ratio was 3.1, which is not good
as the four time acceleration in other algorithms. SAKE
with ESPIRIT are combined algorithm with both low rank
matrix completion algorithms for Hankel structured matrix
collected from the ACS k-space data and SENSE algorithm
for filling high-frequency k-space [43]. SAKE with ESPIRiT
was recently proposed to reduce the computational burden of
the original SAKE without noticeable reconstruction quality
loss by performing low rank matrix completion only for the
65 x 65 central region, and after that coil sensitivities are
estimated using the reconstruction data. The estimated coil
sensitivities are used to estimate the remaining k-space missing
data through ESPIRIT [43]. Accordingly, the image quality
from SAKE+ESPIRIT was quite similar to that of SAKE with
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a slight NMSE loss, but the computational time of SAKE
was significantly higher than SAKE+ESPIRIT. Therefore, re-
construction reconstruction SAKE with ESPIRIT were only
illustrated. The parameters for SAKE with ESPIRIT were
chosen such that they provided the best reconstruction results.
The parameters for the ALOHA are as follows: three levels of
pyramidal decomposition with decreasing LMaFit tolerances
(1072,1073,10~%), and 5x5 annihilating filter. The same
LMaFit rank estimation strategy and ADMM parameter used
for single coil experiments were employed. We generated the
square root of sum of squares (SSoS) image from multi-coil
reconstructions.

We also validated the performance of ALOHA for acceler-
ated dynamic cardiac data in the k£ — ¢t domain. A cardiac
cine data set was acquired using a 3T whole-body MRI
scanner (Siemens; Tim Trio) equipped with a 32-element
cardiac coil array. The acquisition sequence was bSSFP and
prospective cardiac gating was used. The imaging parameters
were as follows: FOV= 300 x 300mm?, acquisition matrix
size= 128 x 128, TE/TR = 1.37/2.7ms, receiver bandwidth
= 1184Hz/pixel, and flip angle = 40°. The number of cardiac
phases was 23 and the temporal resolution was 43.2ms. The
k-t space samples including four lines around zero frequency
were retrospectively obtained at the reduction factor of eight
according to a Gaussian distribution. For comparison, k-t
FOCUSS [7], C-LORAKS [17], and SAKE [16] was used.
In case of C-LORAKS (single coil) and SAKE (multi coil),
these algorithms were applied to k-t domain for dynamic
reconstruction. The parameters in k-t FOCUSS, C-LORAKS,
and SAKE, were selected to give the best NMSE values.
For the ALOHA in single coil data, the following parameters
were used: three level of pyramidal decomposition only along
the phase encoding direction, decreasing LMaFit tolerances
(1071,1072,1073) at each scale, and 13x7 annihilating filter.
The same LMaFit rank estimation strategy and ADMM pa-
rameter was p = 10. The k-space weighting in Eq. (69) was
applied only along the phase encoding direction.

Next, we investigated the synergetic improvement of dy-
namic imaging from multi-channel acquisition. Four repre-
sentative coils out of 32 were used. The reason we chose
only four coils was to verify that the generalised ALOHA
can maximally exploit the multi-channel diversity even with
the small number of coils. The four coils were chosen such
that it covers every area of images. The same four coils were
used for all algorithms for fair comparison. In the ALOHA,
the annihilating filter size was 5 x 5. The same LMaFit rank
estimation strategy and ADMM parameter used before were
employed. After the reconstructions of k-space samples, the
inverse Fourier transform was applied, and the SSoS images
were obtained by combining the reconstructed images.

V. RESULTS
A. Static MR experiments

Reconstructed results from a single coil brain data are
shown in Fig. 5 with the NMSE values. From the NMSE
values, we observed that the performance ALOHA was quan-
titatively superior to the performance of [;-wavelet and TV
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Fig. 5: Comparison with [;-wavelet compressed sensing, TV compressed sensing, C-LORAKS, and the proposed method at
the four fold acceleration factors. The data was acquired from a single channel coil. The first row shows reconstructed images,
and the second row shows difference images between the ground-truth and the reconstructions, and the third and last row show
the magnified views of distorted regions in the reconstructed images.

based compressed sensing approach. The reconstruction results
by ALOHA has less perceivable distortion compared to those
of [;-wavelet and TV approaches. This can be easily observed
from the magnified images in the third and the fourth rows of
Fig. 5. In the case of TV, structural distortion around the image
edges was easily recognizable. The reconstruction results of
ly-wavelets exhibits Gibb’s ringing artifacts and distorted grey
matter structure at the cerebellum area (see the fourth row),
whereas the C-LORAKS resulted in a significant noise boost
in the white matter area (see the third row). On the other hand,
ALOHA reconstruction provided best edge structures without
boosting noises.

Next, we compared our parallel imaging results with those
of the existing approaches for additional multichannel saggital
brain data set. The reconstruction results in Figs 6 are from
Gaussian random sampling patterns at the acceleration factor
of 4. The NMSE results in Fig. 6 showed that ALOHA
was most accurate. From the magnified images at the second
row of Fig. 6, we observed that proposed method provided

reconstruction results more accurately than other algorithms.
More specifically, in Fig. 6, we observed that the recon-
struction by GRAPPA and SAKE with ESPIRIT are much
noisier compared to the ALOHA reconstruction. Moreover,
the overall reconstruction errors from SAKE with ESPIRIT
were higher than those from ALOHA. The reconstruction
time was 7.6sec with our preliminary GPU implementation
of ALOHA. Note that the current GPU implementation is
only preliminary because we still use the original CPU version
of LMaFit algorithm from the original authors. Accordingly,
with an optimized GPU implementation of LMaFit may further
reduce the overall computational time, which will be reported
later.

On the other hand, the reconstruction time for GRAPPA,
SAKE and SAKE+ESPIRIT for this example were 9.8 sec,
118.4 sec, and 17.6sec, respectively. For the case of SAKE,
unlike the SAKE+ESPIRIT, the Hankel structured matrix is
constructed using all k-space data similar to ALOHA, but
the computational time was significantly higher than ALOHA.
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SAKE + ESPIRIT (x4)
NMSE 1.813e-02

Proposed (x4)
NMSE 7.496e-03

Fig. 6: Parallel imaging results using GRAPPA, SAKE with ESPIRIT and the proposed method at the four fold acceleration of
Gaussian random sampling pattern. The second row shows the magnified views corresponding to a white box with a broken
line. Note that GRAPPA requires ACS lines, so with the additional 50 samples along ACS region, the effective downsampling

ratio was 3.1.

Accordingly, we found that our computation time was com-
petitive to the existing approaches even with much improved
reconstruction quality.

B. Dynamic MR experiments

Using the sub-sampled k-space data at the acceleration
factor of eight, the average NMSE values of k-t FOCUSS,
C-LORAKS, and ALOHA, were 1.616 x 1072, 1.363 x 1072,
and, 1.224 x 1072, respectively (see Fig. 6(a)). The sub-
sampled data was collected according to a Gaussian distribu-
tion and included the four center lines around zero frequency.
The average NMSE values were calculated using all temporal
frames. The temporal NMSE plot in Fig. 6(a) also confirmed
that the proposed method outperformed k-t FOCUSS and C-
LORAKS across all temporal frames. Moreover, as shown in
Fig. 7(a), the temporal profile of an heart area (indicated as
a broken purple line) by the proposed reconstruction was the
most accurate, which showed sharp transition to systole phase
that were comparable to the true one, whereas the temporal
variation in the k-t FOCUSS and C-LORAKS reconstruction
became smoother and more blurry. Moreover, as indicated by
the yellow arrow in the magnified heart area, false muscle
structures were observed in the conventional approaches.

The NMSE values of the parallel dynamic imaging results
from k-t FOCUSS, SAKE, and the proposed method using
four coil k-space data were 8.75 x 1073, 4.983 x 10~2 and

3.571 x 1073, respectively, which quantitatively showed that
the proposed method outperformed k-t FOCUSS and SAKE
(see Fig. 7(b)). Reduced residual artifacts compared to the
conventional approaches were perceivable in the ALOHA
difference images in Fig. 7(b). Moreover, the temporal profiles
of the proposed reconstruction showed much sharp transition
to the systole phase which were comparable to the true one,
whereas the dynamic slice profile from k-t FOCUSS and
SAKE showed smoother and more blurry transition as shown
in Fig. 7(b). Finally, in the magnified view of the heart area in
Fig. 7(b), we can observed the broken heart muscle structures
in the conventional reconstruction, which was well-preserved
in ALOHA reconstruction.

VI. DISCUSSION

A. Effects of k-space weighting

Figures 8(a)(b) illustrate the effects of wavelet weighting
schemes. In order to also demonstrate the sensitivity with
respect to annihilating filter size, we calculated the NMSE
values by changing the filter size. Furthermore, to decouple
the confounds originated from different implementation of
C-LORAKS and the ALOHA, the experimental results were
generated using the same ALOHA framework with identical
parameter setting, except for those related to the weighting.
Figure 8(a) showed the single channel brain reconstruction
results at the acceleration factor of 6. With weighting, the
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Fig. 7: Reconstruction results from 8 fold accelerated dynamic MR data using (a) single coil and (b) four coils data set. Purple
lines denote the regions corresponding to y-t cross sections that are magnified along temporal axis. The second rows in both
(a) and (b) show the difference images between the ground-truth and the reconstructions. Yellow arrows indicate noticeable

differences between results.

ALOHA reconstruction was conducted using the following
parameters: three levels of pyramidal decomposition, and de-
creasing LMaFit tolerance values (5x 1072, 5x1072,5x10™%)
at each level of the pyramid. In addition, an initial rank
estimate for LMaFit started with one and was refined automat-

ically in an increasing sequence, and the ADMM parameter
was p = 10%. Note that these parameters were same with
those for Fig. 5. For the case of non-weighted implementation
of ALOHA, the other parameters are exactly the same except
the weighting. The results showed that the NMSE values
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Fig. 8: The effect of weighting and annihilating filter size in ALOHA implementation. (a) Single coil brain data results, and (b)
multi coil brain data results. The results clearly showed that the weighting is necessary for ALOHA to exploit the transform
domain sparsity. On the other hand, the unweighted implementation often exhibited divergent behavior with increasing filter

size.

of the weighted ALOHA are consistently better than those
of unweighted ALOHA regardless of the annihilating filter
size. Moreover, the NMSE values were not sensitive to the
annihilating filter size for the cases of the proposed ALOHA,
whose NMSE values converged. The reconstruction results
from two implementation at the minimum NMSE values
(marked as stars in Figures 8(a)(b)) were illustrated, which
again clearly showed that the residual errors of the weighted
ALOHA is significantly smaller than the unweighted version
of ALOHA.

Similar results were obtained from the multi-coil (four
coil) brain imaging data in Figure 8(b). With weighting, the
ALOHA reconstruction was conducted using the following
parameters: three levels of pyramidal decomposition, and de-
creasing LMaFit tolerance values (10~*,1072,1073) at each
level of the pyramid. In addition, an initial rank estimate
for LMaFit started with one and was refined automatically
in an increasing sequence, and the ADMM parameter was
1t = 10%. The reconstruction parameters for the unweighted
implementation of ALOHA were exactly the same except the
weighting. The results showed that the unweighted version is
very sensitive to the annihilating filter size, which showed the

divergent behavior as the filter size increases. However, the
proposed weighted ALOHA exhibited the convergent behav-
iors. This result clearly confirmed Theorem 2.1, saying that the
low rank structure is invariant as long as the annihilating filter
size is bigger than the transform domain sparsity level. The
reconstruction results at the minimum NMSE values clearly
showed that the proposed approach provided more accurate
reconstruction.

B. Hyper-Parameter Estimation

In order to show the importance of the pyramidal decom-
position, Fig. 9 plots the computational time versus NMSE
values of single coil brain data by changing the number of
decomposition levels. As discussed before, the maximum de-
composition level is determined by the acquired low frequency
components and the annihilating filter size. In this data set, k-
space dimension was 208 x 512 and the annihilating filter size
was 23 x 23, and 7 x 7 k-space data around zero frequency
were acquired. In order to have a region that is not affected
by periodic boundary condition, we should impose constraint

n/2° —py +1=208/2° —23 +1 > 23,
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where s is the scale. This provides s < 2, and the maximum
scale becomes 2. Fig. 9 showed that the performance gain
increases as a scale increases; as expected, for s > 2,
the performance improvement was negligible. Therefore, the
maximum scale was determined as s = 2.

The other important reconstruction parameters include the
size of the annihilating filter, the number of iterations, and tol-
erances used in LMaFit algorithm. Recall that the annihilating
filter size should be set larger than the sparsity level of the
transform coefficients for the case of single coil measurement.
However, a large annihilating filter size introduces significant
computational burden, so we tried to reduce the filter size as
long as the image quality is not degraded. Based on extensive
experiments, we found that in single coil image, the filter size
should be set larger than that of parallel imaging, because
the annihilating filter size is solely determined by the sparsity
level.

Finally, the tolerance level for LMaFit, which corresponds
to the fitting accuracy, plays key role in determining the initial
rank estimate. The initial rank estimate need not be close to
the exact rank, but it was used to define the dimension of U
and V in ADMM. We found that the tolerance level could
be determined by considering different noise contributions in
k-space data. Specifically, higher frequency components are
usually contaminated by higher level of noises compared to
the low frequency k-space data, so the LMaFit fitting accuracy
need not be enforced strictly. This was the case when LMaFit
was applied at a lower scale, since high frequency k-space
data are more weighted and noises were boosted. On the other
hand, more accurate fitting is required for higher scale data
where the lower frequency k-space data are more weighted.
Consequently, we chose decreasing values of tolerances per
scale for in-vivo experiments.

C. Concatenation Direction of Hankel Matrices for Parallel
MRI

10 T T
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=
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-
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Fig. 9: Reconstruction NMSE values with respect to different
decomposition levels. The data is from single channel static
MR reconstruction results in Fig. 5.

When generalizing the Hankel matrix model from single
to multiple channels, we chose to stack the Hankel matrices
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Error (x20)

Fig. 10: Dependency of concatenation direction of Hankel ma-
trix for parallel MRI with the same annihilating filter size for
each coil k-space data: (middle) side by side augmentation of
Hankel matrices, and (right) vertical augmentation of Hankel
matrices. Side-by-side augumentation provided the superior
reconstruction results.

corresponding to individual channels side by side. One could
suggest stacking them one on top of another, which would
represent a different matricization. Based on our discussion
before, the concatenation order, however, does matter, when
we use the periodic boundary condition.

To confirm the theoretical findings, we compared the re-
construction results from the two different stacking of Hankel
matrices using the same n x d-size individual Hankel matrix
size. As shown in Fig. 10, the vertical augmentation of Hankel
matrices provided inferior reconstruction results compared
with the side by side augmentation of Hankel matrices. This
again confirmed our theoretical findings.

D. Further Extensions

Note that this work is a first step towards unifying sparse
and low rank models, so there are many rooms for improve-
ment. In particular, it could be extended for other measurement
and sparsity models. For example, while Eq. (15) is based on
a data equality constraint that focuses on standard Cartesian
image reconstruction, we could convert (P) in (15) to deal
with the cases of general non-Cartesian imaging [16] and/or

noisy measurements:
(P RANK.Z(m)

[Po(m) — Agl@ f)|| <6,

(70)

ming, ecn

subject to

where m denotes the spectrum data on cartesian grid, Ag
denotes a linear mapping that interpolates non-cartesian data
16 to the nearest cartesian grid index €2, and the noisy level
0 is determined by the gridding or measurement noises. The
minimization problem (P’) can be also addressed using an
SVD-free ADMM approach similar to (63), except that the
indicator function-based data fidelity term is changed to [,
data fidelity term. The detailed algorithm is described in [25].
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In addition, ALOHA could be extended for reconstruction
models that incorporate various system non-idealities. For
example, in our recent work [33], we showed that EPI ghost
artifacts from off-resonance related inconsistencies between
odd and even echoes can be removed by exploiting the
following fact: the differential k-space data between the even
and odd echoes is a Fourier transform of an underlying sparse
image. Specifically, we can construct a rank-deficient concate-
nated Hankel structured matrix from even and odd k-space
data, whose missing data can be interpolated using ALOHA.
However, the extension of ALOHA for general off-resonance
corrected MR reconstruction is still an open problem, which
needs a further investigation in the future.

While this paper assumes that signals can be sparsified using
dyadic wavelet ransforms, in general, signals can be more
easily sparsified using non-decimated redundant wavelets. Be-
cause there exists no aliasing components due to the lack of
downsampling, the construction of weighted Hankel matrix is
much simpler than the dyadic wavelet transform. However,
one of the potential downsides is that sparsity level does not
decrease for each scale. One potential solution would be to
utilize the recovered high frequency k-space samples as addi-
tional measurements for interpolating the coarser level k-space
samples. Note that this is different from dyadic wavelet case
which discards higher frequency k-space samples in recovering
low frequency k-space samples. However, the efficacy of this
proposal needs to be evaluated systematically, which is beyond
the scope of this paper.

Other than wavelet or TV representation, modern com-
pressed sensing approach deals with advanced sparsifying
transforms such as patch-based methods, dictionary learning,
Markov penalties, and so on. The extension of ALOHA for
such model would be important and rewarding, which requires
more extensive investigation in subsequent research. Recently,
ALOHA was successfully used for MR parameter mapping
[32]. Considering recent success of direct parameter mappings
[44], [45], the extension of ALOHA for direct parameter
mapping would be very interesting, which deservers further
investigations in the future.

Moreover, the theory is quite general and can be used
beyond the MR applications. Note that the superior perfor-
mance of the proposed scheme has been demonstrated in other
biomedical imaging and image processing applications such
as image inpainting [46], super-resolution microscopy [47],
image denoising [48], and so on, which clearly confirm the
practicality of the new theory.

VII. CONCLUSION

In this paper, we proposed a general framework for annihi-
lating filter based low-rank Hankel matrix approach (ALOHA)
for static and dynamic MRI inspired by recent calibration-free
k-space methods such as SAKE and C-LORAKS. Because
natural images can be much more effectively sparsified in
the transform domains, we generalized the idea to include
signals that can be sparsfied in the transform domains. Our
analysis showed that the transform domain sparsity can be
equivalently represented as a low-rank Hankel structured ma-
trix in the weighted k-space domain, whose weighting function
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is determined solely by the transform, not by the data. When
signals are effectively sparsified in dyadic wavelet transform,
we showed that the corresponding low rank Hankel matrix
completion problem can be implemented using a pyramidal
decomposition, which significantly reduces the overall com-
putational complexity and improves the noise robustness. For
parallel imaging data, we verified that by stacking Hankel
matrix from each coil side by side, we may exploit the coil
sensitivity diversity.

Reconstruction results from single coil static MR imaging
confirmed that the proposed method outperformed the existing
compressed sensing frameworks. We further demonstrated
superior performance of the proposed method in static parallel
MR imaging even without calibration data. Furthermore, the
algorithm was successfully extended to dynamic accelerated
MRI along k-t domain with both single coil and multi coil
dynamic MR data. Therefore, we concluded that the proposed
algorithm was very effective in unifying the compressed
sensing and parallel MRIL.
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APPENDIX

The proof can be found in our companion paper [25].
However, for self-completeness of this paper, we repeat the
proof in [25].

Proof. Suppose that the filter h[k] is the minimum length
annihilating filter. Then, for any ky > 1 tap filter a[k], it is
easy to see that the following filter with d = r + k; taps is
also an annihilating filter for y[k]:

bl = @e K] = > halplilk -l =0, ¥ k. (D)

because h, * Y =ax* h x 9y = 0. The matrix representation of
(71) is given by B
cg(y)ha =0

where fla denotes a vector that reverses the order of the
elements in

N ~ N T
ha: ha[O]ﬂ"' 7ha[d_1} ’ (72)
and
gl-1] 0] gld - 2]
4[0] y[1] yld — 1]
gl j[2 j[d
C(y) = y[ | y[ | y[ ] (73)
gn—d  gln—d+1] gln —1]
gin—d+1] gn—d+2] g[n]
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Accordingly, by choosing n such that n — d + 1 > r and
removing the boundary data outside of the sample indices

[0, - ,n—1], we can construct the following matrix equation:
H(§)b, =0, (74)
where the Hankel structure matrix .7 (y) is constructed as
TURE) il — 1)
= | Mo M s
fln—d) gln—d+1] o g1

_ Now, we will first show that J#°(y) has rank at most r. Let
h € C™t! be the minimum size annihilating filter. Then, (72)
can be represented as

B, —

% (h)a (76)

where & = [a[0] alk; —1]] and €(h) € C¥*M is a
Toeplitz structured convolution matrix from h:

h[0] 0 0
hl1]  R[0] - 0

“(h) = ﬁ[r] hlr _ 1] hlr — ;61 +1] e Cth an
00 i

where d = r + k;. Since €' (h) is a convolution matrix, it is
full ranked and we can show that

dim RAN (h) = ki,

where dim(-) denotes the dimension of a matrix and RAN(-)
is a range space. Moreover, the range space of ¢ (h) now
belongs to the null space of the Hankel matrix, so it is easy
to show

k1 = dim RAN% (h) < dim NULZ(3),
where NUL(+) represent a null space of a matrix. Thus,

RANK.JZ(Y)

Next, we will show by contradiction that the rank of J#(y)
cannot be smaller than r. Since the rank of the Hankel matrix
is at most r, any set of r + 1 consecutive rows (or columns)
of (n —d+ 1) x d Hankel matrix with the entries §j[k] must
be linearly dependent. Therefore, §j[k] should be the solution
of the following difference equation:

ZhgrTUr—12k4r—1+ a1 2p41+a0zr =0, for 0 <k <n—r—

(78)
where {a;}/~ are coefficients of the linear difference equa-
tion, and

p—1
P(A) =M +ap, NP 4 ag A tag = H(/\—ds)m
s=0

(719)
is the characteristic polynomial of the linear difference equa-
tion, where do, - - - ,dp—1 are distinct nonzero complex num-

= min{d, n—d+1}—dim NULJZ(y) < d—k; = r.
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bers so that ag # 0 and

p—1
r= E Mg.
s=0

From the fundamental solution of a linear difference equation
[49, page 69, Corollary 2.23], we know that the sequences
{Kld* ez (0 < s <p—1and 0 <[ < m,— 1) are the
solutions of the linear difference equation, and g[k] can be
represented as their linear combination [49]:

p—1mg—1

] :Z Z cotkld® for 0 <k <n—1,

s=0 [=0

(80)

where the all the leading coefficients ¢ ,,,—1 (0 < s < p—1)
are nonzero. If we assume that the rank of the Hankel matrix
with the sequence as in (80) is less than r, then the sequence
§[k] must satisfy the recurrence relation of order ¢ < r, since
any collection of ¢ consecutive rows (or columns) are linearly
dependent. Thus, there exist a recurrence relation for g[k] of
order ¢ < r such that

Zhtqtbg—12k+g—1F - Fb12p41+bozr = 0, for 0 < k < n—qg—1,

1)
whose solution is the sequence given by
p/—l mgfl
=33 @) for 0<k<n—1, (82)
s=0 =0
where Z’S’:Ol m/, <r—1, and
p'—1
PiA) = X4 b X b b = [[(A—d)™
s=0

is the characteristic polynomial of (81). Subtracting (82) from
(80), we have the equation

ii LENADR for 0 <k <n—1.

s=0 [=0

(83)

where p, = Zgzgl ml < 2r — 1, dJ’s are distinct, and its
characteristic polynomial is the lowest common multiple of
P()\) and Pi()N).

Now, from [49, page 69, Corollary 2.23], we know that the
sequences {7 s[k] = K'(d/)* : 0 < s < p"—1,0<1<
m! — 1} are linearly independent sequences, and from the
hypothesis min(n — d + 1,d) > r, we have n > 2r — 1.
By combining Corollary 2.14 and Theorem 2.15 in [49, page
61-62], we can conclude that the p, X p, principal minor for
the coefficient matrix must have a nonzero determinant. Thus,
if we write (83) as a matrix equation, the coefficient matrix
for ¢/ ,’s is of full column rank so that all the coefficients of
the RHS on (20) must be zero. Thus, all the zeros and their
multiplicities of zeros for the polynomials P()\), P;(\) must
be identical. That is a contradiction to the hypothesis that the
degree of P;() is less than that of P()). O
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